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Inverse Reinforcement Learning (IRL)

Model
(MDP)

Demonstrations

H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, “Socially compliant mobile robot navigation via inverse
reinforcement learning”, I. J. Robotics Res., 2016
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Definition (Markov Decision Process)

An MDP is a set M = {S,A, T , γ, r} that consists of:

states S
actions A
transition function T : S ×A× S → [0, 1]

discount factor γ ∈ [0, 1)

reward function/vector r ∈ R|S| (or r : S → R)

Definition (Inverse Reinforcement Learning (Russell 1998))

Given:

M\ {r},
demonstrations D = {ζi}Ni=1, where ζi = {(si ,t , ai ,t)}Tt=1,

features X ∈ R|S|×d ,

find r.
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Other Applications
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Has the model learned optimal behaviour?

Can it recognise its own weak spots?

Solution: variational inference (VI)

Outline for the rest of the talk

Maximum causal entropy and stochastic policies

Reward function as a Gaussian process (GP)

Variational approximation of the posterior distribution

Theoretical results: how can we compute the gradient?

Empirical results: does it work?

Conclusions: what have we achieved?
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Maximum Causal Entropy

Standard MDP

Vr(s) := r(s) + γmax
a∈A

∑
s′∈S
T (s, a, s ′)Vr(s

′)

Maximum Causal Entropy (Linearly Solvable) MDP1

Vr(s) := log
∑
a∈A

exp

(
r(s) + γ

∑
s′∈S
T (s, a, s ′)Vr(s

′)

)

1B. D. Ziebart, J. A. Bagnell and A. K. Dey, “Modeling interaction via the
principle of maximum causal entropy”, in ICML, 2010.
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Reward Function as a Gaussian Process

Automatic Relevance Determination Kernel

For any two states xi , xj ∈ Rd ,

k(xi , xj) = λ0 exp

(
−1

2
(xi − xj)

ᵀΛ(xi − xj)− 1[i 6= j ]σ2 tr(Λ)

)
where Λ = diag(λ1, . . . , λd), σ2 = 10−2/2,

1[b] =

{
1 if b is true

0 otherwise.
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Reward Function as a Gaussian Process

Inducing Points

m� |S| states,

their features Xu

and rewards u.

The GP Then Gives Gives...

Kernel/covariance matrices: Ku,u, Kr,u, Kr,r

Prior probabilities:

p(u) = N (u; 0,Ku,u)
p(r | u) = N (r;Kᵀ

r,uK−1
u,uu,Kr,r −Kᵀ

r,uK−1
u,uKr,u)
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Variational Inference

The posterior distribution

p(r,u | D) =
p(D | r)p(r | u)p(u)

p(D)

can be approximated with q(r,u) = q(r | u)q(u), where

q(r | u) = p(r | u)

q(u) = N (u;µ,Σ)
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Variational Inference

u r D

λµΣ

Goal: minimise the Kullback-Leibler divergence:

DKL(q(r,u) ‖ p(r,u | D)) = Eq(r,u)[log q(r,u)− log p(r,u | D)]

Equivalently, maximise the evidence lower bound:

L = Eq(r,u)[log p(D, r,u)− log q(r,u)]

= tᵀKᵀ
r,uK

−1
u,uµ− Eq(r,u)[v ]− DKL(q(u) ‖ p(u))

where

v =
N∑
i=1

T∑
t=1

Vr(si ,t)− γ
∑
s′∈S
T (si ,t , ai ,t , s

′)Vr(s
′).
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Theoretical Results

Perturbation Lemma

Dominated Convergence Theorem

Derivatives of PDFs

Measurability Boundedness

Lemma 1 Lemma 2 Lemma 3

Lemma 4

Main Theorem
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Main Theorem

Theorem

Whenever the derivative exists,

∂

∂t

∫∫
Vr(s)q(r | u)q(u) dr du =

∫∫
∂

∂t
[Vr(s)q(r | u)q(u)] dr du,

where t is any element of µ, Σ, or λ.
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Dominated Convergence Theorem

Theorem

Let (X ,M, µ) be a measure space and {fn} a sequence of
measurable functions on X for which {fn} → f pointwise almost
everywhere on X , and the function f is measurable. Assume there
is a non-negative function g that is integrable over X and
dominates the sequence {fn} on X in the sense that

|fn| ≤ g almost everywhere on X for all n.

Then f is integrable over X and

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.
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Other Results

Seeing V as V : S → R|S| → R...

Proposition (Measurability)

MDP value functions V (s) : R|S| → R (for s ∈ S) are Lebesgue
measurable.

Proposition (Boundedness)

If the initial values of the MDP value function satisfy the following
bound, then the bound remains satisfied throughout value iteration:

|Vr(s)| ≤ ‖r‖∞ + log |A|
1− γ

.
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Other Results

Lemma

Let i , j = 1, . . . ,m, and let

c : R|S| × Rm → (Σi ,j − ε,Σi ,j + ε) ⊂ R

be a function with a codomain arbitrarily close to Σi ,j . Then every
element of

∂q(u)

∂Σ

∣∣∣∣
Σi,j=c(r,u)

has upper and lower bounds of the form q(u)d(u), where
d(u) ∈ R2[u].
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Experiments

Source: https://www.flickr.com/photos/nationaleyeinstitute/9955408003/, Creative Commons Attribution
2.0 Generic license

https://www.flickr.com/photos/nationaleyeinstitute/9955408003/
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Experimental Scenario

s1

s2

s3

ζ1 = {(s1, a1)} ζ2 = {(s3, a2)}
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Convergence
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Covariance: Attempt 1
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Covariance: Attempt 2 (with Cliques!)
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Covariance: Attempt 2 (with Cliques!)
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Conclusions

VI can be applied to IRL without additional assumptions

proof
other theoretical results
implementation

Covariances can be used to compare clear vs. noisy data

but not the amount of data

Thank You!
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