| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
|              |         |     |        |             |             |

# Variational Inference for Inverse Reinforcement Learning with Gaussian Processes

Paulius Dilkas

26th January 2019

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| •0000        | 0       | 00  | 00 | 00000  | 000000      | 0           |



H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning", *I. J. Robotics Res.*, 2016

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | 0       | 00  | 00 | 00000  | 000000      | 0           |



H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning", *I. J. Robotics Res.*, 2016

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| •0000        | 0       | 00  | 00 | 00000  | 000000      | 0           |



H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning", *I. J. Robotics Res.*, 2016

| Introduction | Entropy | GPs |    | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| •0000        | 0       | 00  | 00 | 00000  | 000000      | 0           |



H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning", *I. J. Robotics Res.*, 2016



## Model (MDP)



#### Demonstrations



H. Kretzschmar, M. Spies, C. Sprunk and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning", *I. J. Robotics Res.*, 2016

| Introduction | Entropy | GPs |    | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | 0       | 00  | 00 | 00000  | 000000      | 0           |

### Definition (Markov Decision Process)

An MDP is a set  $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, \gamma, \mathbf{r}\}$  that consists of:

- ullet states  ${\mathcal S}$
- $\bullet$  actions  ${\cal A}$
- $\bullet$  transition function  $\mathcal{T}\colon \mathcal{S}\times\mathcal{A}\times\mathcal{S}\to [0,1]$
- discount factor  $\gamma \in [0,1)$
- reward function/vector  $\mathbf{r} \in \mathbb{R}^{|\mathcal{S}|}$  (or  $r \colon \mathcal{S} \to \mathbb{R}$ )

| Introduction | Entropy | GPs |    | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | 0       | 00  | 00 | 00000  | 000000      | 0           |

## Definition (Markov Decision Process)

An MDP is a set  $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, \gamma, \mathbf{r}\}$  that consists of:

- ullet states  ${\mathcal S}$
- $\bullet$  actions  ${\cal A}$
- $\bullet$  transition function  $\mathcal{T}\colon \mathcal{S}\times\mathcal{A}\times\mathcal{S}\to [0,1]$
- discount factor  $\gamma \in [0,1)$
- reward function/vector  $\mathbf{r} \in \mathbb{R}^{|\mathcal{S}|}$  (or  $r : \mathcal{S} \to \mathbb{R}$ )

## Definition (Inverse Reinforcement Learning (Russell 1998))

Given:

- $\mathcal{M} \setminus \{\mathbf{r}\}$ ,
- demonstrations  $\mathcal{D} = \{\zeta_i\}_{i=1}^N$ , where  $\zeta_i = \{(s_{i,t}, a_{i,t})\}_{t=1}^T$ ,
- features  $\mathbf{X} \in \mathbb{R}^{|\mathcal{S}| \times d}$  ,

find r.

| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
| 00000        |         |     |        |             |             |
|              |         |     |        |             |             |

# Other Applications



P. Abbeel, A. Coates, M. Quigley and A. Y. Ng, "An application of reinforcement learning to aerobatic helicopter flight", in *NIPS*, 2006



B. D. Ziebart, N. D. Ratliff, G. Gallagher, C. Mertz, K. M. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey and S. S. Srinivasa, "Planning-based prediction for pedestrians", in *IROS*, 2009



K. D. Bogert and P. Doshi, "Multi-robot inverse reinforcement learning under occlusion with interactions", in *AAMAS*, 2014

| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
| 00000        |         |     |        |             |             |
|              |         |     |        |             |             |

- Has the model learned optimal behaviour?
- Can it recognise its own weak spots?
- Solution: variational inference (VI)



| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
| 00000        |         |     |        |             |             |
|              |         |     |        |             |             |

q(**r**, **u**)

 $p(\mathbf{r}, \mathbf{u} \mid \mathbf{D})$ 

- Has the model learned optimal behaviour?
- Can it recognise its own weak spots?
- Solution: variational inference (VI)

## Outline for the rest of the talk

- Maximum causal entropy and stochastic policies
- Reward function as a Gaussian process (GP)
- Variational approximation of the posterior distribution
- Theoretical results: how can we compute the gradient?
- Empirical results: does it work?
- Conclusions: what have we achieved?

| Maximum      | Causal F | Intropy |    |        |             |             |
|--------------|----------|---------|----|--------|-------------|-------------|
| Introduction | Entropy  | GPs     | VI | Theory | Experiments | Conclusions |
| 00000        | ●        | 00      | 00 | 00000  | 000000      | 0           |

#### Standard MDP

$$V_{\mathbf{r}}(s) \coloneqq r(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{\mathbf{r}}(s')$$

Maximum Causal Entropy (Linearly Solvable) MDP<sup>1</sup>

$$V_{\mathsf{r}}(s) \coloneqq \log \sum_{a \in \mathcal{A}} \exp\left(r(s) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') V_{\mathsf{r}}(s')\right)$$

<sup>&</sup>lt;sup>1</sup>B. D. Ziebart, J. A. Bagnell and A. K. Dey, "Modeling interaction via the principle of maximum causal entropy", in *ICML*, 2010.

| Roward       | Function | as a Ca | uccion | Drocoss |             |             |
|--------------|----------|---------|--------|---------|-------------|-------------|
|              |          | •0      |        |         |             |             |
| Introduction | Entropy  | GPs     |        | Theory  | Experiments | Conclusions |

## Automatic Relevance Determination Kernel

For any two states  $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^d$ ,

$$k(\mathbf{x}_i, \mathbf{x}_j) = \lambda_0 \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mathbf{x}_j)^{\mathsf{T}} \mathbf{\Lambda}(\mathbf{x}_i - \mathbf{x}_j) - \mathbb{1}[i \neq j]\sigma^2 \operatorname{tr}(\mathbf{\Lambda})\right)$$

where  ${f \Lambda}={\sf diag}(\lambda_1,\ldots,\lambda_d)$ ,  $\sigma^2=10^{-2}/2$ ,

$$\mathbb{1}[b] = \begin{cases} 1 & \text{if } b \text{ is true} \\ 0 & \text{otherwise.} \end{cases}$$

| Doword       | Eunction | 20.2 ( | uccion | Dracass |             |             |
|--------------|----------|--------|--------|---------|-------------|-------------|
| 00000        | 0        | 00     |        | 00000   | 000000      | 0           |
| Introduction | Entropy  | GPs    | VI     | Theory  | Experiments | Conclusions |

#### Inducing Points

- $m \ll |\mathcal{S}|$  states,
- their features X<sub>u</sub>
- and rewards u.

#### The GP Then Gives Gives...

- Kernel/covariance matrices:  $K_{u,u}$ ,  $K_{r,u}$ ,  $K_{r,r}$
- Prior probabilities:

• 
$$p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; \mathbf{0}, \mathbf{K}_{\mathbf{u}, \mathbf{u}})$$

•  $p(\mathbf{r} \mid \mathbf{u}) = \mathcal{N}(\mathbf{r}; \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{u}, \mathbf{K}_{\mathbf{r},\mathbf{r}} - \mathbf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathbf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mathbf{K}_{\mathbf{r},\mathbf{u}})$ 

| Introduction | Entropy    | GPs | VI | Theory | Experiments | Conclusions |
|--------------|------------|-----|----|--------|-------------|-------------|
| 00000        | O          | 00  | ●o | 00000  | 000000      | 0           |
| Variationa   | l Inferenc | е   |    |        |             |             |

The posterior distribution

$$p(\mathbf{r}, \mathbf{u} \mid \mathcal{D}) = rac{p(\mathcal{D} \mid \mathbf{r})p(\mathbf{r} \mid \mathbf{u})p(\mathbf{u})}{p(\mathcal{D})}$$

can be approximated with  $q(\mathbf{r},\mathbf{u}) = q(\mathbf{r} \mid \mathbf{u})q(\mathbf{u})$ , where

• 
$$q(\mathbf{r} \mid \mathbf{u}) = p(\mathbf{r} \mid \mathbf{u})$$
  
•  $q(\mathbf{u}) = \mathcal{N}(\mathbf{u}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

| Variational    | Inference | 2   |    |        |             |             |
|----------------|-----------|-----|----|--------|-------------|-------------|
| Introduction I | Entropy   | GPs | VI | Theory | Experiments | Conclusions |
|                | 0         | oo  | o● | 00000  | 000000      | 0           |



Goal: minimise the Kullback-Leibler divergence:

 $D_{\mathrm{KL}}(q(\mathbf{r},\mathbf{u}) \parallel p(\mathbf{r},\mathbf{u} \mid \mathcal{D})) = \mathbb{E}_{q(\mathbf{r},\mathbf{u})}[\log q(\mathbf{r},\mathbf{u}) - \log p(\mathbf{r},\mathbf{u} \mid \mathcal{D})]$ 

Equivalently, maximise the evidence lower bound:

$$\begin{split} \mathcal{L} &= \mathbb{E}_{q(\mathbf{r},\mathbf{u})}[\log p(\mathcal{D},\mathbf{r},\mathbf{u}) - \log q(\mathbf{r},\mathbf{u})] \\ &= \mathbf{t}^{\mathsf{T}} \mathsf{K}_{\mathbf{r},\mathbf{u}}^{\mathsf{T}} \mathsf{K}_{\mathbf{u},\mathbf{u}}^{-1} \mu - \mathbb{E}_{q(\mathbf{r},\mathbf{u})}[v] - D_{\mathrm{KL}}(q(\mathbf{u}) \parallel p(\mathbf{u})) \end{split}$$

where

$$v = \sum_{i=1}^{N} \sum_{t=1}^{T} V_{\mathsf{r}}(s_{i,t}) - \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s_{i,t}, a_{i,t}, s') V_{\mathsf{r}}(s').$$

| Introduction | Entropy   | GPs | Theory | Experiments | Conclusions |
|--------------|-----------|-----|--------|-------------|-------------|
| 00000        | O         | oo  | ●0000  | 000000      | O           |
| Theoretica   | l Results |     |        |             |             |



| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
| 00000        | O       | oo  | ○●○○○  | 000000      | O           |
| Main Th      | neorem  |     |        |             |             |

## Theorem

Whenever the derivative exists,

$$\frac{\partial}{\partial t} \iint V_{\mathbf{r}}(s)q(\mathbf{r} \mid \mathbf{u})q(\mathbf{u}) \, d\mathbf{r} \, d\mathbf{u} = \iint \frac{\partial}{\partial t} [V_{\mathbf{r}}(s)q(\mathbf{r} \mid \mathbf{u})q(\mathbf{u})] \, d\mathbf{r} \, d\mathbf{u},$$

where t is any element of  $\mu$ ,  $\Sigma$ , or  $\lambda$ .

| Introduction | Entropy  | GPs     | VI     | Theory | Experiments | Conclusions |
|--------------|----------|---------|--------|--------|-------------|-------------|
| 00000        | O        | oo      | 00     | 00●00  | 000000      | 0           |
| Dominate     | ed Conve | ergence | Theore | em     |             |             |

#### Theorem

Let  $(X, \mathcal{M}, \mu)$  be a measure space and  $\{f_n\}$  a sequence of measurable functions on X for which  $\{f_n\} \rightarrow f$  pointwise almost everywhere on X, and the function f is measurable. Assume there is a non-negative function g that is integrable over X and dominates the sequence  $\{f_n\}$  on X in the sense that

 $|f_n| \leq g$  almost everywhere on X for all n.

Then f is integrable over X and

$$\lim_{n\to\infty}\int_X f_n\,\mathrm{d}\mu=\int_X f\,\mathrm{d}\mu.$$

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | O       | oo  | 00 | 000●0  | 000000      | O           |
| Other Res    | sults   |     |    |        |             |             |

Seeing V as  $V : S \to \mathbb{R}^{|S|} \to \mathbb{R}$ ...

#### Proposition (Measurability)

MDP value functions V(s):  $\mathbb{R}^{|S|} \to \mathbb{R}$  (for  $s \in S$ ) are Lebesgue measurable.

#### Proposition (Boundedness)

If the initial values of the MDP value function satisfy the following bound, then the bound remains satisfied throughout value iteration:

$$|V_{\mathbf{r}}(s)| \leq rac{\|\mathbf{r}\|_{\infty} + \log |\mathcal{A}|}{1 - \gamma}.$$

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | O       | 00  | 00 | 0000●  | 000000      | O           |
| Other Res    | ults    |     |    |        |             |             |

#### Lemma

Let  $i, j = 1, \ldots, m$ , and let

$$c: \mathbb{R}^{|\mathcal{S}|} imes \mathbb{R}^m o (\Sigma_{i,j} - \epsilon, \Sigma_{i,j} + \epsilon) \subset \mathbb{R}$$

be a function with a codomain arbitrarily close to  $\Sigma_{i,j}$ . Then every element of

$$\left. \frac{\partial q(\mathbf{u})}{\partial \boldsymbol{\Sigma}} \right|_{\boldsymbol{\Sigma}_{i,j}=c(\mathbf{r},\mathbf{u})}$$

has upper and lower bounds of the form  $q(\mathbf{u})d(\mathbf{u})$ , where  $d(\mathbf{u}) \in \mathbb{R}_2[\mathbf{u}]$ .

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | O       | 00  | 00 | 00000  | ●00000      | O           |
| Experimen    | ts      |     |    |        |             |             |



Source: https://www.flickr.com/photos/nationaleyeinstitute/9955408003/, Creative Commons Attribution 2.0 Generic license

| Introduction | Entropy   | GPs | VI | Theory | Experiments | Conclusions |
|--------------|-----------|-----|----|--------|-------------|-------------|
| 00000        | O         | 00  | 00 | 00000  | o●oooo      | O           |
| Experimen    | tal Scena | rio |    |        |             |             |



| Introduction | Entropy | GPs | Theory | Experiments | Conclusions |
|--------------|---------|-----|--------|-------------|-------------|
| 00000        | O       | oo  | 00000  | 00●000      | O           |
| <u> </u>     |         |     |        |             |             |

# Convergence



| Courrier     | οco: Λ++οι | mnt 1 |    |        |             |             |
|--------------|------------|-------|----|--------|-------------|-------------|
| Introduction | Entropy    | GPs   | VI | Theory | Experiments | Conclusions |
| 00000        | O          | oo    | 00 | 00000  | 000000      | 0           |



| Introduction | Entropy   | GPs      | VI      | Theory | Experiments | Conclusions |
|--------------|-----------|----------|---------|--------|-------------|-------------|
| 00000        | O         | 00       | 00      | 00000  | 0000€0      | 0           |
| Covariance   | e: Attemp | ot 2 (wi | th Cliq | lues!) |             |             |



| Introduction | Entropy   | GPs      | VI      | Theory | Experiments | Conclusions |
|--------------|-----------|----------|---------|--------|-------------|-------------|
| 00000        | O         | 00       | 00      | 00000  | 0000€0      | 0           |
| Covariance   | e: Attemp | ot 2 (wi | th Cliq | lues!) |             |             |







| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | O       | oo  | 00 | 00000  | 000000      | •           |
| Conclusior   | IS      |     |    |        |             |             |

- VI can be applied to IRL without additional assumptions
  - proof
  - other theoretical results
  - implementation
- Covariances can be used to compare clear vs. noisy data
  - but not the amount of data

| Introduction | Entropy | GPs | VI | Theory | Experiments | Conclusions |
|--------------|---------|-----|----|--------|-------------|-------------|
| 00000        | O       | oo  | 00 | 00000  | 000000      | •           |
| Conclusior   | IS      |     |    |        |             |             |

- VI can be applied to IRL without additional assumptions
  - proof
  - other theoretical results
  - implementation
- Covariances can be used to compare clear vs. noisy data
  - but not the amount of data

# Thank You!