# Generalising Weighted Model Counting 

Paulius Dilkas

University of Edinburgh, UK

Viva Voce



## Weighted Model Counting

Example
We have a biased coin that has a probability $p \in[0,1]$ of landing heads. What is the probability that it lands heads at least once if we toss it three times?

In Propositional Logic. . .

- Formula: $x_{1} \vee x_{2} \vee x_{3}$
- Weights: $w\left(x_{i}\right)=p, w\left(\neg x_{i}\right)=1-p$ for $i=1,2,3$
- Models: $\mathcal{P}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \backslash\{\emptyset\}$

In First-Order Logic. . .

- Formula: $\exists x \in\{1,2,3\}$. $P(x)$
- Weights: $w(P)=p, w(\neg P)=1-p$
- Models: $\mathcal{P}(\{P(1), P(2), P(3)\}) \backslash\{\emptyset\}$


## Significance of WMC and This Work

## Applications

- Probabilistic inference: graphical models, statistical relational models, probabilistic programming
- Neural-symbolic artificial intelligence
- Bioinformatics
- Robotics
- Natural language processing
- Enumerative combinatorics


## Impact

- Suitable WMC algorithm
- Appropriate input format
- Lifted reasoning
- provable tractability
- experimental speedup
- Expressive data structures


## Contributions



Generalising Representations

- Beyond weights on literals
- Circuits for recursion


Random-Instance Experiments

- Application-specific parameters
- ProbLog predicates, arities
- Parameters of hardness
- density, primal treewidth


## Generalising Representations

## WMC and Measures on Boolean Algebras

## Definition

A measure is a function $\mu: \mathcal{P}(\mathcal{P}(X)) \rightarrow \mathbb{R}_{\geq 0}$ such that:

- $\mu(\perp)=0$;
- $\mu(x \vee y)=\mu(x)+\mu(y)$ whenever $x \wedge y=\perp$.

Observation
WMC corresponds to the process of calculating the value of $\mu(x)$ for some $x \in \mathcal{P}(\mathcal{P}(X))$.

## WMC and Measures on Boolean Algebras

## Definition

A measure is a function $\mu: \mathcal{P}(\mathcal{P}(X)) \rightarrow \mathbb{R}_{\geq 0}$ such that:

- $\mu(\perp)=0$;
- $\mu(x \vee y)=\mu(x)+\mu(y)$ whenever $x \wedge y=\perp$.

Observation
WMC corresponds to the process of calculating the value of $\mu(x)$ for some $x \in \mathcal{P}(\mathcal{P}(X))$.

Observation
Classical WMC is only able to evaluate factorable measures (c.f., a collection of mutually independent random variables).
Theorem (Informal Version)
It is always possible to add more variables to turn a non-factorable measure into a factorable measure.
However, that is not necessarily a good idea!

## Transforming Known WMC Encodings into PBP

For any propositional formula $\phi$ over a set of variables $X$ and $p, q \in \mathbb{R}$, let $[\phi]_{q}^{p}: 2^{X} \rightarrow \mathbb{R}$ be the pseudo-Boolean function defined as

$$
[\phi]_{q}^{p}(Y):= \begin{cases}p & \text { if } Y \models \phi \\ q & \text { otherwise }\end{cases}
$$

for any $Y \subseteq X$.
Example

| Clauses | In CNF | Pseudo-Boolean Functions |  |
| :--- | :--- | :--- | :--- |
| $\neg x \Rightarrow p$ | $x \vee p$ | $[\neg x]_{1}^{0.2}$ |  |
| $p \Rightarrow \neg x$ | $\neg x \vee \neg p$ |  |  |
| $x \Rightarrow q]_{0.2}^{0.8}$ |  |  |  |
| $q \Rightarrow x$ | $\neg x \vee q$ | $[x]_{1}^{0.8}$ |  |
| $\neg x$ | $\neg x$ | $[\neg x]_{0}^{1}$ | $[\neg x]_{0}^{1}$ |

## First-Order Logic and Recursive Computations

Example (Counting $P: M \rightarrow N$ Injections)

## Input Formula

$$
\forall x \in M . \exists y \in N . P(x, y)
$$

$\forall x \in M . \forall y, z \in N . P(x, y) \wedge P(x, z) \Rightarrow y=z$
$\forall w, x \in M . \forall y \in N . P(w, y) \wedge P(x, y) \Rightarrow w=x$


Recursive Solution

$$
f(m, n)= \begin{cases}1 & \text { if } m=0 \text { and } n=0 \\ 0 & \text { if } m>0 \text { and } n=0 \\ f(m, n-1)+m \cdot f(m-1, n-1) & \text { otherwise. }\end{cases}
$$

## Resulting Improvements to Counting Functions

Let $M$ and $N$ be two sets with cardinalities $|M|=m$ and $|N|=n$. The new compilation rules enable ForcLift to efficiently count $M \rightarrow N$ functions such as:

- injections in $\Theta(m n)$ time
- best: $\Theta(m)$
- partial injections in $\Theta(m n)$ time
- best: $\Theta\left(\min \{m, n\}^{2}\right)$
- bijections in $\Theta(m)$ time
- optimal!


## Random-Instance Experiments

## A Constraint Model for (Probabilistic) Logic Programs

```
0.2::stress(P) :- person(P).
0.3::influences( }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}):-\operatorname{friend}(\mp@subsup{P}{1}{},\mp@subsup{P}{2}{})
0.1::cancer_spont(P) :- person(P).
0.3::cancer_smoke(P) :- person(P).
    smokes(X):- stress(X).
    smokes(X):- smokes(Y),influences(Y, X).
    cancer(P):- cancer_spont(P).
    cancer(P):- smokes(P), cancer_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity


## ProbLog Inference Algorithms on Random Instances



Algorithm

- BDD
--- d-DNNF
-- K-Best
-     - NNF
... SDD
.- SDDX


## Random WMC Instances

Key Idea
Parameter $\rho \in[0,1]$ biases the probability distribution towards adding variables that would introduce fewer new edges in the primal graph.

## Example

Partially-constructed formula:

$$
\left(\neg x_{5} \vee x_{2} \vee x_{1}\right) \wedge\left(x_{5} \vee ? \vee ?\right)
$$



Base probability of each variable being chosen:

$$
\frac{1-\rho}{4} .
$$

Both $x_{1}$ and $x_{2}$ get a bonus probability of $\rho / 2$ for each being the endpoint of one out of the two neighbourhood edges.

## How WMC Algorithms Scale w.r.t. Primal Treewidth

We fit the model $\ln t \sim \alpha w+\beta$, i.e., $t \sim e^{\beta}\left(e^{\alpha}\right)^{w}$, where $t$ is runtime, and $w$ is primal treewidth.


## Summary

What Have We Learned?

- Pseudo-Boolean functions as an alternative to literal weights
- Cycles in graphs that encode recursive calls
- WMC algorithms based on algebraic decision diagrams are fundamentally different:
- they can supports non-literal weights
- their running time depends on the numerical values of weights
- they peak at higher density
- they scale worse w.r.t. primal treewidth

Future Directions

- PBP: new encodings, kernelization, pseudo-Boolean solvers
- WFOMC: full automation and more liftable fragments

