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Weighted Model Counting

Example

We have a biased coin that has a probability p € [0, 1] of landing
heads. What is the probability that it lands heads at least once if
we toss it three times?

In Propositional Logic. ..

» Formula: x1 Vxo V x3
» Weights: w(x;) =p, w(-x;)=1—pfori=1,23
> Models: P({x1,x2,x3})\ {0}

In First-Order Logic. . .
» Formula: 3x € {1,2,3}. P(x)
» Weights: w(P) =p, w(—-P)=1-—
> Models: P({ P(1), P(2), P(3) })\{ }



Significance of WMC and This Work

Applications

» Probabilistic inference: graphical models, statistical relational
models, probabilistic programming

» Neural-symbolic artificial intelligence
» Bioinformatics
» Robotics
» Natural language processing
» Enumerative combinatorics
Impact
» Suitable WMC algorithm
» Appropriate input format » » provable tractability
» Lifted reasoning » experimental speedup

P Expressive data structures



Contributions

o\l\:} §O.

Generalising Representations Random-Instance Experiments

» Beyond weights on literals » Application-specific parameters

» Circuits for recursion » PROBLOG predicates, arities

» Parameters of hardness
> density, primal treewidth



Generalising Representations



WMC and Measures on Boolean Algebras

Definition
A measure is a function z: P(P(X)) — R>p such that:
> (L) =0;

» u(xVy)=pu(x)+ u(y) whenever x Ay = L.

Observation
WMC corresponds to the process of calculating the value of ji(x)
for some x € P(P(X)).



WMC and Measures on Boolean Algebras

Definition
A measure is a function z: P(P(X)) — R>p such that:
> u(L)=0;

» u(xVy)=pu(x)+ u(y) whenever x Ay = L.

Observation

WMC corresponds to the process of calculating the value of ji(x)
for some x € P(P(X)).

Observation
Classical WMC is only able to evaluate factorable measures (c.f., a
collection of mutually independent random variables).

Theorem (Informal Version)

It is always possible to add more variables to turn a non-factorable
measure into a factorable measure.

However, that is not necessarily a good ideal



Transforming Known WMC Encodings into PBP

For any propositional formula ¢ over a set of variables X and
p,q € R, let [¢]5: 2X — R be the pseudo-Boolean function

defined as
pifYEG
P(Y) =
[é]q( ) {q otherwise
for any Y C X.
Example

Clauses In CNF Pseudo-Boolean Functions

~x=p xvVp  [«]}?

p=-x —xV-p > (X163
x=q —xVg [x}®

q=X xV g
X X [—\X]g‘) [ﬂx]%




First-Order Logic and Recursive Computations
Example (Counting P: M — N Injections)

Input Formula i;

Vx e M. 3y € N. P(x,y) (f
Vxe M. Vy,ze N. P(x,y) ANP(x,z) = y=z
Vw,x € M. Yy € N. P(w,y) A P(x,y) = w = x

Recursive Solution
ifm=0and n=20

1
f(m,n) =40 if m>0and n=20
f(min—1)4+m-f(m—1,n—1) otherwise.



Resulting Improvements to Counting Functions

Let M and N be two sets with cardinalities |[M| = m and |N| = n.
The new compilation rules enable FORCLIFT to efficiently count
M — N functions such as:
» injections in ©(mn) time
> best: ©(m)
> partial injections in ©(mn) time
> best: ©(min{ m,n}?)
> bijections in ©(m) time
» optimal!



Random-Instance Experiments



A Constraint Model for (Probabilistic) Logic Programs

0.2::stress(P):-person(P).
0.3::influences(P1,P2):-friend(Py, P>2).
0.1::cancer_spont(P):- person(P). e predicates,
0.3::cancer_smoke(P):- person(P). arities
smokes(X): - stress(X). e variables
smokes(X) : - smokes(Y), influences(Y, X). e constants
cancer(P):- cancer_spont(P). e probabilities
cancer(P):- smokes(P), cancer_smoke(P). e length
person(mary): s . o complexity
person(albert).
friend(albert, mary).




PROBLOG Inference Algorithms on Random Instances
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Random WMC Instances

Key Idea

Parameter p € [0, 1] biases the probability distribution towards
adding variables that would introduce fewer new edges in the
primal graph.

Example
Its primal graph:

Partially-constructed formula: X3

X1
_ 7V 7 /\
( X5\/X2\/X1)/\(X5\/-\/')' Xo — X5 Xa

Base probability of each variable being chosen:

1—p
4

Both x; and x> get a bonus probability of p/2 for each being the
endpoint of one out of the two neighbourhood edges.



How WMC Algorithms Scale w.r.t. Primal Treewidth

We fit the model Int ~ aw + f3, i.e., t ~ e’ (e*)", where t is
runtime, and w is primal treewidth.
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Summary

What Have We Learned?
» Pseudo-Boolean functions as an alternative to literal weights

» Cycles in graphs that encode recursive calls

» WMC algorithms based on algebraic decision diagrams are
fundamentally different:

» they can supports non-literal weights

» their running time depends on the numerical values of weights
» they peak at higher density

» they scale worse w.r.t. primal treewidth

Future Directions
> PBP: new encodings, kernelization, pseudo-Boolean solvers
» WFOMC: full automation and more liftable fragments



