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Abstract

Many algorithms have been proposed for solving the maximum common subgraph problem. Some algorithms
tend to be better for some types of instances, but there is no overall winner. Machine learning could be employed
to choose an algorithm for each problem instance based on various properties of the two graphs. We show the
potential performance benefits of this approach over using any single algorithm, and achieve over 85% of that
potential for graphs with just vertex labels and graphs with both vertex and edge labels. Furthermore, we present
new data on the drastic changes in algorithms’ performance when changing the number of distinct labels, making
the conclusions of many research papers seem overly simplistic. Moreover, we use our trained machine learning
models to gain insight into how well the models can recognise instances favouring each algorithm, which features
of the problem instances are most important, and which algorithms prefer what values of those features. Finally,
we explore several ways to improve existing algorithms and create new ones: we adapt the k↓ algorithm to handle
vertex labels, and propose two ways of switching algorithms mid-execution.
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Chapter 1

Introduction

Maximum common subgraph (MCS) is a way to determine the similarity between two graphs. More specifically,
MCS algorithms find what the two graphs have in common (these ideas will be made more concrete in Sec-
tion 1.1). Since graphs can represent many real-world phenomena, MCS algorithms have been used in molecular
science [14, 18, 35, 47], malware detection [45], and substructure discovery [9, 13].

Different MCS algorithms tend to be best for different types of graphs, depending on how many vertices
they have, and whether they contain labels [39]. In some cases the differences are quite small, and typically the
overall best algorithm gets outperformed by other algorithms as often as half the time (see Chapter 3 for more
details). Since there are no (known) clear boundaries that separate instances best handled by each algorithm,
perhaps training a machine learning (ML) model to quickly choose an algorithm based on features of the input
graphs would result in a portfolio faster than any individual algorithm. This is an approach known as algorithm
selection [48] and is the main focus of this project.

In the rest of this chapter we provide rigorous definitions for concepts such as algorithm selection, define the
kind of graphs we are interested in, continue with some necessary graph theory definitions, building up to the
definition of an MCS. We then descibe and illustrate the algorithms used in this project. In order to compare
MCS algorithms and reliably choose an algorithm for each problem instance, we need to run all algorithms
on some pairs of graphs, and use an ML algorithm to find how their running times (or, more precisely, which
algorithm is expected to win) depend on various features of the graphs. Thus, Chapter 2 describes all graphs
used to compare algorithms and train ML models, looking into their origins, how they were constructed, and
undocumented but relevant features. Chapter 3 then describes how the algorithms were run to generate running
time data, explores how the algorithms compare on different parts of the data, outlines the features used for ML,
and describes their distributions in the data. We then move on to building the ML models in Chapter 4, where
we start with the relevant definitions in ML and statistics, describing the relevant software and the ML algorithm
used. Afterwards, we describe various ways to evaluate the resulting models, and do so for three different models.
Finally, Chapter 5 provides ideas on how to expand one of the algorithms to previously unsupported instances,
and introduces a new algorithm that merges two algorithms into one.

1.1 Definitions

Definition 1.1. Given a set I of problem instances, a space of algorithms A, and a performance measure m :
I × A → R, the per-instance algorithm selection problem is to find a mapping s : I → A that optimises
E[m(i, s(i))] [3]. A (and sometimes this problem in general) is often referred to as an algorithm portfolio
[31, 61].
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Definition 1.2. Let S be a set and k a non-negative integer. Then [S]k denotes the set of k-subsets of S [58], i.e.,

[S]k = {A ⊆ S : |A| = k}.

Definition 1.3. An undirected multigraph is a pair (V,E), where V is a set of vertices and E is a set of edges,
together with a map E → V ∪ [V ]2, which assigns one or two vertices to each edge [12]. If an edge is assigned
to a single vertex, it is called a loop. When several edges map to the same pair of vertices, they are referred to as
multiple edges.

For the purposes of this project, we look at two kinds of labelled graphs: those with vertex labels, and those
with both vertex and edge labels. Labels can be used to represent important properties of graphs such as types
of atoms and bonds in chemistry. We define them as follows (the definitions are loosely inspired by a PhD thesis
on graph matching [1]):

Definition 1.4. A (vertex-)labelled graph is a 3-tuple G = (V,E, µ), where V , E are as in Definition 1.3 and
µ : V → {0, . . . , N − 1} is a vertex labelling function, for some N ∈ N.

Definition 1.5. A fully labelled graph is a 4-tuple G = (V,E, µ, ζ), where the first three elements are as in
Definition 1.4 and ζ : E → {0, . . . ,M − 1} is an edge labelling function, for some M ∈ N.

Specifically, note that:

• If a graph is labelled, then all its vertices (and possibly edges) are assigned a label.

• We are only considering finite sets of labels, represented by non-negative integers.

• A vertex-labelled graph is just a special case of a fully labelled graph with M = 1.

• An unlabelled graph is just a special case of of a vertex-labelled graph with N = 1.

The last two observations allow us to tailor subsequent definitions to fully labelled graphs without having
to redefine everything for unlabelled and vertex-labelled graphs as well. When vertex and/or edge labels are
immaterial to a definition, we will omit the labelling function from the full 4-tuple and denote a graph as just
G = (V,E).

We formulate all definitions in terms of undirected multigraphs, as some of the graphs in Chapter 2 contain
multiple edges, and many contain at least one loop. In the rest of the dissertation, we will use the word “graph” to
denote undirected multigraphs. Next, we adapt some basic graph theory definitions to work with our definitions
of graphs and labelling. As most definitions in the literature are typically defined for simple graphs with no
labels, the cited sources are heavily adapted to the full generality of graphs relevant to this dissertation.

Definition 1.6. Two graphs G1 = (V1, E1, µ1, ζ1) and G2 = (V2, E2, µ2, ζ2) are said to be isomorphic if there
are bijections f : V1 → V2, g : E1 → E2 such that [47]:

• ∀e ∈ E1, if e maps to some v ∈ V1 ∪ [V1]
2, then g(e) maps to f(v), where f(v) = {f(v1), f(v2)} if

v = {v1, v2} (preserving structure);

• ∀v ∈ V1, µ2(f(v)) = µ1(v) (preserving vertex labels) [2];

• ∀e ∈ E1, ζ2(g(e)) = ζ1(e) (preserving edge labels).
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Figure 1.1: Two graphs with binary ({0, 1}) labels on both vertices and edges with pattern graph Gp on the left
and target graph Gt on the right. Grey vertices and thick blue edges represent label 1, while white vertices and
black edges have label 0.

Definition 1.7. Let f : X → Y be a function. Then the restriction of f to A ⊆ X is the function f |A : A→ Y
such that ∀a ∈ A, f |A(a) = f(a) [53].

Definition 1.8. A graph G′ = (V ′, E′, µ′, ζ ′) is a subgraph of graph G = (V,E, µ, ζ) if: V ′ ⊆ V , E′ ⊆ E (with
the edge-mapping function restricted to E′), µ′ = µ|V ′ , ζ ′ = ζ|E′ [12].

Definition 1.9. An induced subgraph of a graph G = (V,E) is a subgraph H = (S,E′), where E′ ⊆ E is a set
of edges mapped to S ∪ [S]2 [47].

Definition 1.10. A clique C in a graph G = (V,E) is a subset of V such that ∀v1, v2 ∈ C with v1 6= v2, there is
an edge in E mapping to {v1, v2} [44].

Finally, we define the main problem of this project:

Definition 1.11. A maximum common (induced) subgraph (MCS) between graphs G1 and G2 is a graph G3 =
(V3, E3) such that G3 is isomorphic to induced subgraphs of both G1 and G2 with |V3| maximised [47]. The
maximum common (induced) subgraph problem is the problem of finding an MCS between two given graphs
G1 = (V1, E1) and G2 = (V2, E2), usually expressed as a bijection between two subsets of vertices U1 ⊆ V1
and U2 ⊆ V2.

The decision version of this problem (finding a common induced subgraph of a fixed size) is NP-complete [21],
and thus the MCS optimisation problem is NP-hard [39, 43].

Example 1.1. Consider the graphs in Figure 1.1. Since Gp has only one blue edge, while all edges of Gt are
blue, any common subgraph can have up to one edge. Note that Gp does not have an independent set of size 3
(three vertices with no edges between them), so the maximum number of vertices in any common subgraph is
three, and u1, u2 must be included. The only vertex inGp not connected to either u1 or u2 is u3, so any maximum
common subgraph must be isomorphic to the subgraph induced by {u1, u2, u3} in Gp. Indeed, there are three
different solutions:

{u1 7→ v4, u2 7→ v1, u3 7→ v3},
{u1 7→ v4, u2 7→ v2, u3 7→ v3},
{u1 7→ v5, u2 7→ v2, u3 7→ v3}.
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1.2 Algorithms

We consider four algorithms that were shown to be competitive in a recent paper by McCreesh, Prosser and
Trimble [39]: k↓ [20], MCSPLIT [39], MCSPLIT↓ [39], and the clique encoding [36]. In order to explain how
they work, we need to define two other problems:

Definition 1.12. Given a graph G, the maximum clique problem is an optimisation problem asking for a clique
in G with maximum cardinality [44].

Definition 1.13. Given two (finite) graphs G1 and G2, the subgraph isomorphism problem is the decision prob-
lem of determining whether G1 is isomorphic to a subgraph of G2 [10]. G1 and G2 are usually referred to as the
pattern and target graphs [51, 56, 62], respectively. We will use these definitions in the context of both the sub-
graph isomorphism problem and the MCS problem, where the word ’pattern’ will typically refer to the smaller
of the two graphs.

The k↓ algorithm [20] starts by trying to solve the subgraph isomorphism problem, i.e., finding the pattern graph
in the target graph. If that fails, it allows a single vertex of the pattern graph to not match any of the target graph
vertices and tries again, allowing smaller and smaller pattern graphs until it finds a solution. The number of
vertices of the pattern graph that are allowed this additional freedom is represented by k. More specifically, the
algorithm creates a domain for each pattern graph vertex, which initially includes all vertices of the target graph
and k wildcards. The domains are filtered with various propagation techniques. Then the search begins with
a smallest domain (not counting wildcards), a value is chosen, and domains are filtered again to eliminate the
chosen value.

Definition 1.14. Although typically the image of a set S under a function f [6] is defined as a set

f(S) = {f(s) : s ∈ S},

we define the multiset image of S under f by the same expression, but with f(S) as a multiset, i.e., if f(x) = f(y)
for two different x, y ∈ S, then f(x) is in f(S) at least two times [23].

Definition 1.15. The association graph of an MCS problem instance between graphs G1 = (V1, E1, µ1, ζ1) and
G2 = (V2, E2, µ2, ζ2), denoted G1∇G2 = (V3, E3) [36], is a simple graph that can be defined as follows:

• we add a vertex (v1, v2) to V3 if µ1(v1) = µ2(v2), and the multiset image of loops of v1 under ζ1 is equal
to the multiset image of loops of v2 under ζ2;

• E3 is defined so that there is an edge between vertices (u1, u2) and (v1, v2) if u1 6= v1, u2 6= v2, and the
multiset image of edges in E1 that are between u1 and v1 under ζ1 is equal to the multiset image of edges
in E2 that are between u2 and v2 under ζ2.

The clique encoding [36] solves the MCS problem by creating an association graph and transforming the prob-
lem into an instance of the maximum clique problem [30], which is then solved by a sequential version of the
maximum clique solver by McCreesh and Prosser [37], which is a branch and bound algorithm that uses bitsets
and greedy colouring. Colouring is used to provide a quick upper bound: if a subgraph can be coloured with k
colours, then it cannot have a clique of size more than k.

MCSPLIT [39] is a branch and bound algorithm that builds its own bit string labels for vertices in both pattern
and target graphs. Once it chooses to match a vertex u in graph G1 with a vertex v in graph G2, it iterates over
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all unmatched vertices in both graphs, adding a 1 to their labels if they are adjacent to u or v and 0 otherwise.
That way a vertex can only be matched with vertices that have the same labels. The labels are also used in the
upper bound heuristic function: if a particular label is assigned to m vertices in G1 and n vertices in G2, then up
to min{m,n} pairs can be matched for that label.

MCSPLIT↓ is a variant of MCSPLIT mentioned but not explained in the original paper [39]. It is meant
to be similar to k↓ in that it starts by trying to find a subgraph isomorphism and keeps decreasing the size of
common subgraphs that it is interested in until a solution is found. Based on the source code1, there are a few
key differences between MCSPLIT↓ and MCSPLIT:

• Instead of always looking for larger and larger common subgraphs, we have a goal size and exit early if a
common subgraph of that size is found.

• The goal size is decreased if the search finishes without a solution.

• Having a big goal size allows the heuristic to be more selective and prune more of the search tree branches.

The MCSPLIT paper [39] compared these (and a few constraint programming) algorithms and found MC-
SPLIT to win with unlabelled graphs from Section 2.1 of this dissertation, the clique encoding to win with labelled
graphs, and MCSPLIT↓ to win with unlabelled graphs from Section 2.2 (closely followed by k↓).

1https://github.com/jamestrimble/ijcai2017-partitioning-common-subgraph/blob/master/
code/james-cpp/mcsp.c
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Chapter 2

Problem Instances

In order to build ML models that predict the winning algorithm for each pair of graphs as well as to see how the
algorithms compare for different kinds of graphs, we need to have or generate some graphs. For that we use two
graph databases that contain a large variety of graphs differing in size, various characteristics, and the way they
were generated.

2.1 Labelled Graphs

All labelled graphs are taken from the ARG Database [15, 50], which is a large collection of synthetic graphs for
benchmarking various graph-matching algorithms. The database contains randomly generated graphs; 2D, 3D,
and 4D meshes; and bounded valence graphs. Furthermore, each graph-generating algorithm is executed with
several (3–5) different parameter values. The database includes 81,400 pairs of labelled graphs. Their unlabelled
versions are used as well.

2.1.1 Characteristics of Graph Labelling

In Definitions 1.4 and 1.5 we used N and M to denote the number of different labels for vertices and edges,
respectively. The ARG Database supports interpreting the same graphs to have different numbers of different
labels via the following parameter1:

Definition 2.1. A graph G = (V,E) is said to have a p% (vertex) labelling if

N = max
{
2n : n ∈ N, 2n <

⌊ p

100%
× |V |

⌋}
.

The default value for p is 33%. The publications associated with the database [15, 50] say nothing about how
the labels are distributed among the N values. We calculate the number of vertices that were assigned each label
for each graph (represented by C) and compare those values with the numbers we would expect from a uniform
distribution (represented by E(C)). We plot a histogram of the difference E(C) − C in Figure 2.1 and observe
that the difference is normally distributed around 0.

1http://mivia.unisa.it/datasets/graph-database/arg-database/documentation/, “How to read labeled
graphs”
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Figure 2.1: Histogram of the difference between the expected number of vertices assigned each label and the
actual number (for all labelled graphs).

2.2 Unlabelled Graphs

We also include a collection of benchmark instances for the subgraph isomorphism problem2 (with the biochem-
ical reactions dataset excluded since we are not dealing with directed graphs). It contains only unlabelled graphs,
and consists of the following sets3:

images-CVIU11 Graphs generated from segmented images. There are 43 pattern graphs and 146 target graphs,
giving a total of 6278 instances.

meshes-CVIU11 Graphs generated from meshes modelling 3D objects. There are 6 pattern graphs and 503
target graphs, giving a total of 3018 instances. Both images-CVIU11 and meshes-CVIU11 datasets
are described in a paper by Damiand et al. [11].

images-PR15 Graphs generated from segmented images [52]. There are 24 pattern graphs and a single target
graph, giving 24 instances.

LV Graphs with various properties (connected, biconnected, triconnected, bipartite, planar, etc.). 49 graphs are
paired up in all possible ways, giving 492 = 2401 instances.

scalefree Scale-free networks generated using a power law distribution of degrees (100 instances).

si Bounded valence graphs, 4D meshes, and randomly generated graphs (1170 instances). This is the unlabelled
part of the ARG database. The LV, scalefree, and si datasets are described in two papers by Solnon
[51] and by Zampelli, Deville, and Solnon [62].

phase Random graphs generated to be close to the satisfiable-unsatisfiable phase transition (200 instances) [38].

largerGraphs Larger instances of the LV dataset. There are 70 graphs, giving 702 = 4900 instances. The separ-
ation was made and used in the k↓ paper [20], a paper on algorithm selection for the subgraph isomorphism
problem by Kotthoff, McCreesh, and Solnon [28], and the MCSPLIT paper [39].

Remark 2.1. Since k↓ comes from the subgraph isomorphism problem background, it treats the two (pattern and
target) graphs differently. Therefore, when graphs are not divided into patterns and targets, we run the algorithms
with both orderings ((G1, G2) and (G2, G1)).

2http://liris.cnrs.fr/csolnon/SIP.html
3This set of instances was taken from the repository (https://github.com/jamestrimble/ijcai2017-

partitioning-common-subgraph) for the MCSPLIT paper [39] and has some minor differences from the version on
Christine Solnon’s website.
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Chapter 3

Generating Data

A machine learning (ML) model requires data from which to learn. We are using an R package called LLAMA

[25, 26], which helps to train and evaluate ML models in order to compare algorithms. LLAMA has previously
been used to create algorithm portfolios for the travelling salesperson problem [27] and the subgraph isomorph-
ism problem [28]. First, we run each algorithm on all pairs of pattern-target graphs and record the running times
(described in Section 3.1). Then, we adapt a graph feature extractor program used in an algorithm selection paper
for the subgraph isomorphism problem by Kotthoff, McCreesh, and Solnon [28] to handle the binary format of
the ARG Database [15, 50], run it on all graphs, and record the features in a way described in Section 3.2.

3.1 Running Time of Algorithms

The algorithms were compiled with gcc 6.3.0 and run on nodes with the Ubuntu 17.04 (Zesty Zapus) operating
system, dual Intel Xeon E5-2697A v4 (2.60 GHz) processors, and 512 GB RAM. Each algorithm was set to time
out after 1000 s. A Makefile was created to run multiple experiments in parallel (with, e.g., make -j 64),
which generates pairs of graph filenames for all datasets, runs the selected algorithms with various command
line arguments, redirects their output to files that are later parsed using sed and regular expressions into the
CSV format. For each algorithm, we keep the full names of pattern and target graphs, the number of vertices in
the returned MCS, running time as reported by the algorithms themselves, and the number of explored nodes in
the search tree. Entries with running time greater than or equal to the timeout value are considered to have timed
out. The aforementioned node counts are collected but not currently used. Afterwards, the answers of different
algorithms are checked for equality (for algorithms that did not time out).

Some limitations had to be enforced to avoid running out of memory. First, the clique algorithm requires
O(n2m2) memory for a pair of graphs with n andm vertices [20, 36], so its virtual memory usage was limited to
7 GB with ulimit -v and the instances from Section 2.2 (which contain much larger graphs) were restricted
to m × n < 16,000. Second, having almost 105 problem instances and analysing 7 different kinds of labelling
(according to Definition 2.1) results in too much data for the ML algorithm. Therefore, we sample 30,000 out
of 81,400 instances from Section 2.1. The sample is drawn once and used to train ML models for both vertex-
labelled and fully labelled graphs. As, with 50% labelling, most instances are solved within the time limit,
sampling from the whole database still leaves us with enough instances where at least one algorithm finished
within the time limit.

In the rest of this section we explore and compare how the algorithms performed on the three different sub-
problems under consideration, namely with unlabelled, vertex-labelled and fully labelled graphs. We introduce
empirical cumulative distribution function (ECDF) plots [60] (also known as cumulative plots): for each unit of
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(a) Data from Section 2.1, the ARG Database (b) Data from Section 2.2

(c) All unlabelled data

Figure 3.1: Comparison of the runtimes of algorithms on unlabelled data.

time on the horizontal axis, the value on the vertical axis represents the proportion of problem instances solved in
that amount of time or less on an instance-by-instance basis. For example, if an algorithm finished one instance
in 1 s and two instances in 2 s, then its ECDF curve will connect points (0, 0), (1, 13), and (2, 1) (assuming that
time is measured in seconds).

3.1.1 Unlabelled Graphs

We plot the ECDFs for unlabelled graphs in both databases in Figure 3.1. We can check that the orderings of
the algorithms in parts (a) and (b) of Figure 3.1 are the same as in Figures 3a and 4 of the MCSPLIT paper
[39]. Namely, MCSPLIT outperforms k↓ in Figure 3.1a, and the opposite happens in Figure 3.1b. In Figure 3.1c
we also plot a curve for the virtual best solver (VBS), i.e., a perfect algorithm portfolio that always chooses the
best-performing algorithm for each problem instance. Note that the difference between MCSPLIT↓ and the VBS
is very small. Therefore, a portfolio cannot provide significant performance benefits for unlabelled graphs.

Table 3.1 shows that most of the datasets have multiple algorithms that managed to outperform the others for
some problem instances. Thus, looking at the differences between different datasets will not be enough to predict
the best algorithm. More specifically, Table 3.1 shows the numbers of times that each algorithm’s runtime was
lower than or equal to the runtimes of other algorithms. Therefore, if two or more lowest runtimes are equal (as
can often happen with single-digit runtimes), both algorithms are marked as winning in the table.

Given this information, we would expect the ML algorithm to suggest using MCSPLIT and MCSPLIT↓ most
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Dataset clique k↓ MCSPLIT MCSPLIT↓

images-CVIU11 0 32 79 1081
images-PR15 0 0 0 24
largerGraphs 0 14 30 167
LV 90 30 489 439
meshes-CVIU11 0 13 0 23
phase 0 0 0 0
scalefree 0 0 0 80
si 0 10 102 1135
ARG Database 1443 141 21,965 27,305

Total 1533 240 22,665 30,254

Table 3.1: The number of times each algorithm outperformed other algorithms, for each dataset.

Figure 3.2: Cumulative plots with the vertical axis starting at 0.8.

of the time, occasionally consider the clique encoding, and to mostly forget about k↓.

3.1.2 Labelled Graphs

We deal with the two types of labelling separately; however, since the results are fairly similar, we describe
them in the same section to highlight the differences. We plot the ECDFs in Figure 3.2. The situation with
vertex-labelled graphs is quite straightforward: MCSPLIT↓ is slight better than MCSPLIT, which is better than
the clique encoding. Moreover, the VBS curve is significantly higher, providing plenty of room for an ML model
to outperform individual algorithms (unlike with unlabelled data). This latter fact is true for fully labelled graphs
as well, whereas the other three curves provide a more interesting story. The clique algorithm is briefly winning
for shorter timeout values, then is between MCSPLIT↓ and MCSPLIT until it drops to the 3rd place right before
the final timeout at 1,000,000 ms. This is likely because the clique encoding is better with higher labelling
percentages (we will see this shortly) and such graphs are generally easier to solve (because there are fewer
“matchable” combinations of vertices, each pair of vertices is likely to have different labels).

Just like with unlabelled graphs we could split the data into different subsets based on how (and by whom)
the graphs were generated, now we can analyse how the situation changes with different labelling percentages.
While some publications explored several different values of the labelling percentage (33%, 50%, 75%) [5, 7, 8],
and some explored only one (33%) [36, 39], we explore a much wider range from 5% to 50%, showing exactly
when algorithms considered best for labelled graphs stop being good, when faced with a smaller number of
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Figure 3.3: For both types of labelling and for the three algorithms we plot how three characteristics change with
respect to the labelling percentage: proportion of instances solved within the time limit, total runtime, and the
number of times each algorithm outperformed the others.
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labels. In Figure 3.3 we analyse two performance measures (proportion of instances solved and total runtime)
as well as the number of times each algorithm “wins”, for each labelling percentage. The two performance
statistics tell exactly the same story, and it is the same for both types of labelling. The only difference is that
the clique algorithm’s major drop in performance starts at 20% for vertex-labelled graphs and at 15% for fully
labelled graphs. With higher labelling percentages, the clique encoding is better than MCSPLIT, which is in turn
better than MCSPLIT↓. With lower levels of labelling, two differences emerge: MCSPLIT experiences a drop in
performance below MCSPLIT↓, and the performance of the clique algorithm starts to drop exponentially. The
latter is exactly what makes the clique encoding finish last in Figure 3.2, even though it is in the lead for most
labelling percentages.

Remark 3.1. Note that we are only considering instances solved by at least one algorithm. Out of the 30,000
instances selected by our random sampling procedure, the number of such instances ranges from 56% with 5%
labelling to 99% with 50% labelling for vertex-labelled graphs (the percentages for fully labelled graphs are
similar). Thus a (roughly) horizontal line should not be interpreted as the algorithm performing equally well
for different labelling percentages: the performance of all algorithms improves with higher labelling percentages
as the problem becomes significantly easier. In this case we are more interested in the differences between
individual algorithms.

As for the last two plots of Figure 3.3, MCSPLIT wins more often than MCSPLIT↓. This is not surprising for
higher labelling percentages (based on the other two types of plots), but this remains true for lower percentages
as well. Perhaps this is because by design MCSPLIT↓ is better at handling problem instances with a big answer.
With a smaller labelling percentage, MCSPLIT is more likely to time out on those instances, contributing to
MCSPLIT↓ solving more instances than MCSPLIT. Perhaps MCSPLIT↓ is also much faster on those instances,
ensuring its lower total runtime, while consistently falling slightly behind MCSPLIT on easier instances, resulting
in a lower win count. The one significant difference between the two types of labelling is that the clique encoding
wins slightly less than MCSPLIT↓ with vertex labels, but slightly more than MCSPLIT with both vertex and edge
labels, for 25%–33% labelling. Finally, the main observation from this plot is that the overall highest point is only
at 16,401 (18,031) for vertex-labelled graphs (both vertex and edge labels), just slightly above half of the number
of instances (30,000), and other than the clique encoding falling behind with ≤ 15% labelling, win rates of the
three algorithms stay similar. This makes the problem especially potent for an algorithm selection approach.

3.2 Graph Features

The initial set of features is based on the algorithm selection paper for the subgraph isomorphism problem [28],
and consists of the following:

1. number of vertices,

2. number of edges,

3. mean degree,

4. maximum degree,

5. density,

6. mean distance between pairs of vertices,

7. maximum distance between pairs of vertices,

8. standard deviation of degrees,
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9. number of loops,

10. proportion of all vertex pairs with a distance of at least 2, 3, and 4,

11. whether a graph is connected.

Definition 3.1. For a graph G with n vertices and m edges, the (edge) density is defined to be the proportion
of potential edges that G actually has [12]. The standard formula used for simple graphs (i.e., graphs with no
multiple edges or loops [42]) is

m(
n
2

) =
2m

n(n− 1)
.

Even though some of our graphs do contain multiple edges and loops, we stick to this formula, as it was used in
the algorithm selection paper for the subgraph isomorphism problem [28], and it does not break the ML algorithm
in any way to have the theoretical possibility of density greater than 1.

We exclude feature extraction running time as a viable feature by itself (used in the algorithm selection paper
for the subgraph isomorphism problem [28]), since it would not provide any insight into what properties of the
graph affect which algorithm is likely to achieve the best performance. Since k↓ and MCSPLIT↓ both start by
looking for (complete) subgraph isomorphisms, they are likely to outperform other algorithms when both graphs
are very similar and the maximum common subgraph has (almost) as many vertices as the smaller of the two
graphs. Thus, for each feature f in features 1–7 (excluding the rest to avoid division by 0), we also add a feature
for the ratio f(Gp)

f(Gt)
, where Gp and Gt are the pattern and target graphs, respectively.

We analyse three different types of labelling and treat them as separate problems: no labels, vertex labels,
vertex and edge labels. For the last two types, we add a feature corresponding to p defined in Definition 2.1 and
collect data for the following values of p: 5%, 10%, 15%, 20%, 25%, 33%, 50%1. The values correspond to
having about 20, 10, 5, 4, 3, and 2 vertices/edges with the same label on average, respectively.

3.2.1 Distributions of Features

In this section we discuss how the selected features are distributed in both databases. In order to save space, all
plots are in Appendix A. As the graphs from Section 2.2 contain some very hard instances, we only consider
graphs that are part of a pair of graphs solved by at least one algorithm. In order to visualise highly skewed data,
we sometimes use density plots. Furthermore, we take log transformations of ratio features.

Firstly, one feature is not plotted as by definition it has only two possible values. 99.81% of graphs from
Section 2.1 are connected, compared to 93.19% of graphs from Section 2.2. As both numbers are quite high, they
may not be ideal for establishing if connectedness is a significant factor in determining which algorithm performs
the best, but might be representative of real data in application domains such as chemistry [14]. Similarly, the
number of loops for graphs from Section 2.1 is not plotted as it varies between two values: 0.98% of the graphs
have a single loops, while the remaining majority of graphs have no loops. On the other hand, as shown in
Figure A.1, some (although not many) graphs from Section 2.2 have significantly more loops.

Most of the features of graphs from Section 2.1 are displayed in Figure A.2. Other than the number of
vertices, which is manually controlled by the creators of the database, all other distributions are centred around
lower values, with some outliers on the high end. More importantly, we have some graphs that are quite dense
and some graphs with higher mean distance values.

1When working with both vertex and edge labels, we only consider using the same value of p for both vertices and edges. This
“convention” seems to have originated in a paper by the creators of the ARG Database [7] and was replicated in subsequent papers on
MCS algorithms [36, 41].
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The same plots for graphs from Section 2.2 in Figure A.3 show a similar story, albeit for clearer reasons.
Since we filter out graphs that none of the algorithms were able to handle, our sample consists of all the easy
instances and some harder instances that were solved by one or two algorithms. Harder instances typically have
more vertices, which means they are also capable of higher values for many other features, hence all of the
density plots are right-skewed.

Figure A.4 shows density plots of proportions of pairs of vertices with distance at least k for k = 2, 3, 4.
For both databases, as k increases, the distributions shift to the left as expected. However, there is one important
difference: even with k = 4 the plot for graphs from Section 2.2 has its highest peak around 0.9, which means
that adding features for k ≥ 5 could be valuable.

Finally, the density plots of log-transformed ratio features are in Figures A.5, A.6, and A.7. Almost all of
these plots for graphs from Section 2.2 (with the exception of the ratio of mean degree) are clearly bimodal with
one of the two modes centred around 0. Hence we can infer the existence of two subpopulations: one where
pattern and target graphs have very similar properties (the majority for most features) and one where pattern and
target graphs are very different. As for the graphs from Section 2.1, the plot of the ratio of the number of vertices
in Figure A.5 is perfectly symmetrical and centred around 0, since the number of vertices is a controlled variable
for this database. All of the remaining plots for ratio features have most of the data very close to 0. Thus, the
differences between pattern and target graphs are very small. Furthermore, all distributions are symmetrical—the
pattern graph is just as likely to be larger/denser/etc. as the opposite.

3.2.2 Correlations

Another important question is how the features are correlated with each other. Even though research suggests that
Pearson’s correlation coefficient can be quite robust to violations of the data normality assumption [29] (which is
clearly violated with our data), we choose Spearman’s correlation coefficient as the more appropriate alternative:

Definition 3.2. Spearman’s rank correlation coefficient [40] between vectors x,y ∈ Rn is defined as

S =

∑
i[r(xi)− r(x)][r(yi)− r(y)]√∑

i[r(xi)− r(x)]2
∑

i[r(yi)− r(y)]2
,

where r(x) =
∑

i r(xi)/n, r(y) =
∑

i r(yi)/n, and r is a rank function, which, for each of the two vectors,
assigns a natural number to each element such that xi > xj =⇒ r(xi) > r(xj), for any two elements of x.

The resulting correlation coefficients are pictured in Figure 3.4. Ratio features, connectedness, and numbers
of loops have almost no significant correlations, unlike the rest of the features that have significant positive and
negative correlations. There is also a noticeable symmetry between features of the pattern and target graphs, i.e.,
if feature f of the pattern graph correlates with features g and h of the pattern graph, then it also correlates with
features f, g, h of the target graph.
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Figure 3.4: Spearman’s rank correlation coefficients between all pairs of features, for both databases of graphs.
Each correlation coefficient is represented by colour, with dark red for strong negative correlations, dark blue for
strong positive correlations, and white for a correlation coefficient that is close to zero.
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Chapter 4

Machine Learning Models & Their
Evaluation

After running the algorithms with different types and percentages of labelling and recording their running times,
an ML model can be trained to predict which algorithm should be chosen for each pair of graphs. For each such
pair, LLAMA [26] (the package that facilitates constructing algorithm portfolios) can take:

• A list of features. With separate features for pattern and target graphs as well as ratio features and the
labelling percentage, we have 34 features in total.

• A list of performance measures for all algorithms, i.e., the values that we are trying to optimise. In this
case (as in most cases), this corresponds to running time. The values are capped at the timeout value
(1,000,000 ms). Furthermore, instances that were not run on the clique algorithm are also set to the
timeout value. Finally, we filter out instances where all algorithms timed out.

• A list of Boolean values, denoting whether each algorithm successfully finished or not. Timeouts, the
clique algorithm running out of memory, and instances that were not run with the clique algorithm because
of their size are all marked as false.

• A data frame, measuring the running time taken to compute each feature for each problem instance, a
single number for the approximate time taken to compute all features for any instance, or a list with one
or more costs per problem instance. We use the last option with a single cost per instance. This parameter
is used to ensure a fair comparison when comparing the portfolio against other algorithms: the runtime of
the portfolio is defined as the runtime of its chosen algorithm together with feature extraction time. While
costs for graphs from Section 2.2 reached up to 65 s, the maximum cost for graphs from Section 2.1 is
only 6 ms, with distance-based features being more expensive to compute.

After constructing the required data frames as described above, the data needs to be split into training and
test sets. We use a technique called 10-fold cross-validation, which splits the data into 10 parts [57]. 9/10ths of
the data is used to train the ML algorithm, while the remaining 1/10th is used to evaluate how good the trained
model is. This process of training and evaluation is repeated 10 times, letting each of the 10 parts be used for
evaluation exactly once. The goodness-of-fit criteria are then averaged out between the 10 runs.

The 10 folds could, of course, be chosen completely randomly. However, research suggests that stratified
cross-validation typically outperforms random-sampling-based cross-validation and results in a better model
[24]. Suppose we have a dataset of N elements. Stratified sampling partitions it into a number of subpopulations
s1, . . . , sk with n1, . . . , nk elements, respectively (typically based on the value of some feature or collection of
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features). It then draws from each subpopulation independently, ensuring that approximately ni/N of the sample
comes from subpopulation si for i = 1, . . . , k [34]. In this case the data is partitioned into four groups based on
which algorithm performed best.

The cross-validation folds are then used to generate predictions on all data, where each prediction is made by
a model that did not have that observation in its training data set. The predictions are then used to compare the
ML model with individual algorithms and the VBS using ECDF plots and numeric statistics. LLAMA [25, 26]
supports algorithm portfolios based on three different types of ML algorithms:

Classification The ML algorithm predicts which algorithm is likely to perform best on each problem instance.

Regression Each algorithm’s data is used to train a separate ML model, predicting the algorithm’s performance.
The winning algorithm can then be chosen based on those predictions.

Clustering All instances of the training data are clustered and the best algorithm is determined for each cluster.
New problem instances can then be assigned to the nearest cluster.

We are using a classification algorithm called random forests [4], implemented in R [32]. We chose this
algorithm as it is recommended in the LLAMA manual [25] and was successfully used in a similar study [28].
We use the default number of trees (500), and our trees have about 6000, 20,000, and 21,000 nodes on average
for unlabelled, vertex-labelled, and fully labelled graphs, respectively.

In order to discuss and analyse the ML algorithm in more detail, we introduce some new terminology. Each
problem instance with features and running times in the training dataset is called an observation. The class of an
observation is the algorithm with lowest running time for that problem instance. Previously discussed features
of graphs are sometimes referred to as (independent) variables. The (problem) instance space is the Cartesian
product of the domains of features [49], where a domain of X (denoted domX) is a set of all possible values
that X can take.

A (classification) decision tree is “a classifier expressed as a recursive partition of the instance space” [49].
Typically, it can be represented as a rooted binary tree, where each internal node splits the instance space into
two regions based on the value of one of the features1. For example, for some feature X and a particular value
x ∈ domX , the left child might be assigned all observations with X < x, while the right child would get
observations with X ≥ x. For each leaf node, we can count how many of its observations belong to each class
and assign the most common class to that node.

When a decision tree is used to make a classification prediction, a data point travels from node to node
(starting at the root node) according to the splitting rules. When it reaches a leaf node, the class assigned to that
node is outputted as the tree’s prediction.

A random forest builds a collection of decision trees [22]. Given p variables, each time a split is considered,
the variable to split on is chosen from

√
p rather than all p variables. Therefore, the strongest predictors are

sometimes not even considered, ensuring a level of diversity among trees. An individual tree’s prediction is
called a vote. A classifying random forest predicts by collecting the votes from all its trees and predicting the
class with the highest number of votes.

As we saw in Section 3.2, some of the feature data is highly skewed. Thus we should formally address
the question of using transformations (such as log used for some of the plots or x 7→ 1/x, giving the labelling
percentage a different interpretation) before feeding the data into the ML algorithm. While it is a commonly held
belief that predictor transformations are unnecessary for decision tree-based learning algorithms [16, 19, 55],

1Other possibilities include a node having more than two children and a split being made in a more complicated way. Although trees
with such properties fit the definition of a decision tree, standard machine learning algorithms tend to be more restrictive [22, 49].

17



Figure 4.1: LLAMA model compared to the VBS and MCSPLIT↓.

they can affect the predictions of previously unseen data [17]. To see this, consider a split between some values
x1, x2 > 0 at b = x1+x2

2 (which is the type of split used by the randomForest package we are using [17]) and

consider the same situation after applying the transformation x 7→ x2. The new boundary is b′ = x21+x
2
2

2 and it is
easy to find x > b such that x2 < b′. Then, if this is the final split and x1 and x2 have different predictions, x
will have different predictions with and without the transformation. In this project we do not use transformations
as having over 100,000 data points and 500 trees reduces this effect and good algorithm portfolios are created
without even mentioning transformations [27, 28]. However, we would encourage future researchers to consider
log-transforming highly skewed features, especially if using an algorithm more sensitive to the distribution of
data.

Lastly, we use the parallelMap package to train the model using multiple threads and the R code was
heavily optimised to remove temporary variables as soon as they are no longer needed in order to reduce memory
consumption.

4.1 Unlabelled Graphs

In this section we introduce various metrics and plots that can be used to examine a random forest, and use them
to evaluate our model for unlabelled graphs. We examine how well the portfolio performs compared to individual
algorithms and the VBS, how well the ML model predicts the winning of each algorithm, how important each
feature is in making a prediction, how convinced the model is of each prediction, and which algorithms prefer
what values of various features.

4.1.1 Runtime Comparison

In order to compare our ML model with other algorithms, we treat the VBS as the upper bound and the single
best solver MCSPLIT↓ as the lower bound. Out of 45,468 instances solved by at least one algorithm, our model
managed to solve 45,290, compared to 45,223 solved by MCSPLIT↓. In other words, it was able to close 27.3%
of the gap between our lower and upper bounds in terms of instances solved within the time limit. Figure 4.1
shows how the ML model compares to the VBS and the single best solver MCSPLIT↓ (note that the vertical
axis starts at 0.9 rather than 0). Unsurprisingly, the model outperforms MCSPLIT↓, but does not reach the best
possible performance represented by the VBS.
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Figure 4.2: Convergence plot of various error measures as the number of trees in a random forest increases. The
plot shows the OOB error and 1− recall for each algorithm.

4.1.2 Error Rates

Random forests support a convenient way to estimate the test error without cross-validation or any other kind of
data splitting. Each tree in a random forest uses around 2/3 of the data [22]. The remaining 1/3 is referred to as
out-of-bag (OOB) observations . For each observation in the data, we can predict the answer (the vote on which
algorithm is expected to win) using all trees that have the observation as OOB. The majority vote is then declared
to be the answer. The OOB error is the relative frequency of incorrect predictions [22]. As each prediction was
made using trees that had not seen that particular observation before, OOB error is a valid estimate of test error.
The black line in Figure 4.2 shows how the error converges to about 17% as we number of trees reaches 500.

The other lines in the figure, one for each algorithm, are defined as 1 − recall, where, for an algorithm A,
recall [46] is

the number of instances that were correctly predicted as A
the number of instances where A is the correct prediction

.

The error rates for MCSPLIT↓, MCSPLIT, the clique encoding, and k↓ converge to 11%, 29%, 30%, and
80%, respectively. Unlike the errors of other classes, the error of k↓ has an upward trend and converges to a very
high value. Perhaps the model eventually learns not to predict k↓ and the data points with k↓ winning are treated
as randomness in the data more so than a statistically significant trend.

4.1.3 Variable Importance

Next, we are going to explore how important each feature is in making predictions, but for that we need to
introduce some new definitions. Consider a single tree T in a random forest. The root of T can be reached by
any observation, regardless of the values of its features. After passing some node n, some feature is restricted,
i.e., it is imposed an upper or lower limit on the kind of values it can have for it to move towards a particular
child of n [22]. We will refer to a part of feature space that an observation can be in while at some node n as a
region.

Definition 4.1. Suppose we have K classes. Consider some region m. The Gini index is then defined as

G =

K∑
k=1

p̂mk(1− p̂mk),

where p̂mk represents the proportion of observations in region m that are from class k (i.e., have algorithm k as
the best algorithm) [22].
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(a) Dot chart of variable importance calculated based on
the Gini index and sorted from most important to least
important.

(b) How often was each variable used to make splitting
decisions?

As we move down a tree, we want the region to be restricted to a single class. Then the observations from the
training data satisfying the conditions imposed by the parent nodes would be classified with perfect accuracy.
The Gini index is at its lowest when all proportions p̂mk are close to either 0 or 12, meaning that almost all
observations in the region belong to a single class. Hence the Gini index is often used to evaluate the quality of
a split.

The variable importance measure of feature f in Figure 4.3a is calculated as the amount by which the Gini
index decreases after passing nodes that use feature f , averaged over all trees in the random forest [22]. Looking
at the figure more closely, the standard deviations of degrees of both target and pattern graphs are by far the most
important predictors. Unsurprisingly, the worst predictors are the features with very low variance: number of
loops and connectedness of both graphs. Perhaps more surprisingly, the ratio features are not as successful as
one might have hoped: the ratio of the numbers of vertices is at the bottom 5th place and the best ratio feature, the
mean distance ratio, is only 10th. The last thing to note is that features of the pattern graph are always behind the
same features of the target graph and usually not far behind. Perhaps this is due to some datasets having fewer
pattern graphs, or pattern graphs having fewer vertices. The variable usage plot in Figure 4.3b tells a similar
story: the orders are not identical, but there are no big outliers.

4.1.4 Margins

Definition 4.2. Let c1, . . . , cn be n classes and let p be a data point that belongs to class cp. Let v1, . . . , vn denote
the number of votes for each class when given p as input. The margin of p is

vp∑n
i=1 vi

−max
i 6=p

vi∑n
j=1 vj

,

which is a number in [−1, 1] [33].
2Note that G = 0 when any single p̂mk = 0, regardless of the values of other proportions. Therefore, G = 0 does not automatically

make a tree into a good classifier.
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(a) Sorted (b) Unsorted

Figure 4.4: Margins of the data points.

A value above 0 means that the forest as a whole predicted correctly. A margin of 1 would mean that all
trees voted correctly. In Figure 4.4 we plot the margins in the following way: for each problem instance, the
colour signifies the winning algorithm and the height shows its margin. Figure 4.4a shows the points sorted by
the margin, while in Figure 4.4b they are left in the original order of the data (which mostly corresponds to the
order of files in the databases, but with some variation since experiments are started in order but end at different
times). We can recognise the same error rates as in Figure 4.2 as well as areas where MCSPLIT and MCSPLIT↓
dominate. We also plot the histograms of how the margins are distributed for each algorithm in Figure 4.5. We
note that:

• Instances best handled with the clique encoding are usually recognised, but with significant uncertainty.

• We are usually wrong about k↓ (probably because it is a winning algorithm in only 0.44% of all cases).

• When faced with an instance that is best handled with MCSPLIT↓, the vast majority of trees vote correctly.

• MCSPLIT detection rates are decent, but far behind those of MCSPLIT↓.

4.1.5 Partial Dependence

Since the standard deviations of degrees in both target and pattern graphs are the most important features, we plot
partial dependence plots of the standard deviation of degrees in the target graph3 for MCSPLIT↓ and the clique
encoding4 in Figure 4.6. The plotted function [33] is defined as

f(x) = log pk(x)−
1

K

K∑
i=1

log pi(x),

where:

• x is the value on the horizontal axis (in this case standard deviation of degrees in the target graph),

• pi(x) is the proportion of votes for class i for a problem instance with a standard deviation of degrees in
the target graph equal to x,

3The plots for the standard deviation of degrees of the pattern graph are omitted since they are identical to those of the target graph.
4We omit the plots for the other two algorithms as the plot for MCSPLIT looks the same as the one for MCSPLIT↓ and prediction

success rate for k↓ is so low that a plot for k↓ would be meaningless.
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Figure 4.5: Histograms of margins for each winning algorithm.

Figure 4.6: Partial dependence plots of the standard deviation of degrees in the target graph.
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Figure 4.7: LLAMA models compared to other algorithms and the VBS.

Error type Final value for vertex labels (%) Final value for both labels (%)

OOB 13 14
clique 8 7
MCSPLIT 22 29
MCSPLIT↓ 11 11

Table 4.1: The values that all four errors (approximately) converge to, for both types of labelling.

• K is the number of classes,

• and k is the main class under consideration (MCSPLIT↓ and the clique encoding).

Essentially, f(x) compares the proportion of votes for class k with the average value over all classes. We can
deduce that a low standard deviation of degrees is a strong sign that MCSPLIT and MCSPLIT↓ should perform
well. On the other hand, the clique encoding is expected to perform better on graphs with high variance in
degrees. However, max f(x) for the clique encoding is just barely above 0 and much lower than min f(x) for
MCSPLIT↓, meaning that the standard deviation of degrees does not provide enough information to choose the
clique encoding over MCSPLIT or MCSPLIT↓.

4.2 Labelled Graphs

We start by comparing the performance of all individual algorithms, the VBS, and the LLAMA models in Fig-
ure 4.7. While there are important differences among individual algorithms’ curves (discussed in Section 3.1.2),
the way LLAMA behaves with respect to the VBS and MCSPLIT↓ curves is about the same: LLAMA’s curve is
quite close to optimal, and the gap between LLAMA and MCSPLIT↓ is significantly wider than the gap between
MCSPLIT↓ and MCSPLIT. To add more numbers to this picture, LLAMA closed 86% and 88% of the difference
between its lower and upper bounds for vertex-labelled and fully labelled graphs, respectively.

Just like in the previous section, we plot the error rates (defined in Section 4.1.2) in Figure 4.8. The final error
values are summarized in Table 4.1. This time all errors converge downwards and are below 50%. Comparing
vertex-labelled and fully labelled subproblems, the only noticeable difference is that MCSPLIT has a lower error
rate for vertex-labelled graphs, which is also the worst-recognised algorithm for both types of labelling.

According to the variable importance measures plotted in Figure 4.9, the standard deviations of degrees for
both pattern and target graphs still act as top predictors, however, they are overshadowed by the labelling feature,
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Figure 4.8: Convergence plots of various error measures as the number of trees in a random forest increases. The
plots show the OOB error and 1− recall for each algorithm.

Figure 4.9: Variable importance for both types of labelling, sorted from most to least important.
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Figure 4.10: How often was each variable used to make splitting decisions?

which is to be expected considering how impactful it is to the performance of the clique algorithm and the
difficulty of the problem in general. For graphs with both vertex and edge labels, the vertex/edge counts make up
the next most important predictors, while for vertex-labelled graphs, the number of vertices in the target graph
seems to be less important (perhaps simply due to chance). Comparing this with the variable usage statistic in
Figure 4.10 (which is almost identical for the two subproblems), the top 3 spots remain the same, the numbers
of edges drop to the middle of the list, and the numbers of vertices drop to the 6th–7th places from the bottom.
Apparently, even though all four of these predictors end up doing a great job at splitting the data to reduce the
Gini index (a variation of which is used by the random forest algorithm in choosing which predictor to split on
[59]), they are rarely used.

We show the margin plots and histograms in Figures 4.11 and 4.12. Again, the data for both types of labelling
is close to identical. Note that there are plenty of data points in all three colours and the ML models are usually
very convinced when predicting MCSPLIT↓ and the clique encoding and are less sure when dealing with problem
instances best handled with MCSPLIT.

This time we show the partial dependence plots for the top two most important predictors (the labelling
percentage and the standard deviation of degrees in the target graph5) in Figures 4.13 and 4.14, respectively. In
both cases there is little difference between the plots for vertex-labelled and fully labelled graphs. Consider the
labelling plots first. The results for the clique encoding are the most straightforward to interpret. Clearly, the
algorithm performs much better with higher labelling percentages (more different labels). The interesting bit
(just like back in Figure 3.3) is that the curve stays constant between 20% and 50%. In other words, anywhere
above 20% labelling, a higher labelling percentage does not make the clique encoding more preferable than it
already is. Furthermore, once again we can recognise how the curve descends more slowly for both labels than

5The second most important predictor for the fully labelled case is the standard deviation of degrees in the pattern graph, but the
difference is negligible and very likely to be due to randomness.
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Figure 4.11: Sorted and unsorted margins of all data points, for both types of labelling.

it does for vertex labels. On the other hand, both MCSPLIT and MCSPLIT↓ prefer lower labelling percentages.

The partial dependence on the standard deviation of degrees of the target graph says what we already knew
from Section 4.1.5: the clique encoding prefers graphs with more variance in degrees. The one small difference
is that this time the change is not as steep, but this can be easily explained by the fact that the highest standard
deviation of degrees is around 7 in this section compared to around 70 in Section 4.1.5. While MCSPLIT↓
prefers graphs with smaller standard deviations of degrees, the situation with MCSPLIT is suddenly less clear,
which is reflective of the fact that the ML models have less confidence about MCSPLIT (compared to the other 2
algorithms). While small standard deviations are still preferred, there is a significant drop between the values of
1 and 2.
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Figure 4.12: Histograms of margins, for each algorithm and type of labelling.
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Figure 4.13: Partial dependence plots of the labelling percentage.
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Figure 4.14: Partial dependence plots of the standard deviation of degrees in the target graph.
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Chapter 5

Further Suggestions, Investigations, and
Experiments

In this chapter we build on the knowledge gained by developing ML models and analysing algorithms’ perform-
ance to extend current algorithms and propose new ones. We suggest a way to extend k↓ to support vertex-
labelled graphs in a non-trivial manner, and introduce the idea of combining MCSPLIT and the clique encoding
into a single algorithm.

5.1 Modifications to k↓

The k↓ algorithm was modified to accept graphs with vertex labels by adding an additional constraint for match-
ing labels on line 8 of the klessSubgraphIsomorphism function [20] and extending the Graph class with
two new fields: a vector, assigning a label to each vertex, and a vector of vectors, which, for each label,
list all vertices that have that label. After generating most of the data, it was noticed that the vertex-labelled
version of k↓ was winning precisely 0 times and thus was not considered in Sections 3.1.2 and 4.2.

In order to make k↓ more competitive, the neighbourhood degree sequence filtering was improved to make
use of the additional information that labels provide. It is also part of line 8 of the same function in the original
paper [20], however, it is not enabled by default1 and is not used in the experiments of the MCSPLIT paper [39].
We take the definition directly from the k↓ paper [20]:

Definition 5.1. “The neighbourhood degree sequence (NDS) of a vertex p, S(p), is the (non-ascending) sequence
of degrees of its neighbours.”

Definition 5.2. For two sequences S = (s1, . . . , sn) and T = (t1, . . . , tm) and some non-negative integer k, we
say that S k� T if n− k ≤ m and there is a subsequence Sk of S with |Sk| ≤ k such that [20]

∀si ∈ S \ Sk, there exists a distinct j ∈ {1, . . . ,m} such that si − k ≤ tj .

As a simplification of the definition above, we state the following lemma, based on Corollary 1 from the k↓ paper
[20].

1https://github.com/ciaranm/aaai17-between-subgraph-isomorphism-and-maximum-common-
subgraph-paper
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Lemma 5.1. Let S = (s1, . . . , sn) and T = (t1, . . . , tm) be two sequences and k an integer such that k ≥
max{0, n−m}. Then S k� T if and only if

si ≤ ti−k + k ∀i = k + 1, . . . , n.

Proof. A simple extension of Corollary 1 from the k↓ paper [20] by a reordering argument.

We also have Proposition 3 from the same paper [20], which is useful to our proposed algorithm:

Proposition 5.1. Given some k, if a pattern graph vertex p is mapped to a target graph vertex t in a subgraph
isomorphism that excludes up to k vertices from the pattern graph, then

S(p) k� S(t).

Data: a non-negative integer k, a list of NDSs for each label pNds, a list of NDSs for each label tNds
Result: a Boolean value, indicating whether p and t can be matched

1 NeighboursUniqueToPattern←
∑|pNds|−1

i=|tNds| |pNds[i]|;
2 if NeighboursUniqueToPattern > k then return false;
3 for i← 0 to min{|pNds|, |tNds|} − 1 do
4 if |pNds[i]| − |tNds[i]| > 0 then
5 NeighboursUniqueToPattern← NeighboursUniqueToPattern + |pNds[i]| − |tNds[i]|;
6 if NeighboursUniqueToPattern > k then return false;
7 end
8 if pNds[i]

�
�

k� tNds[i] then return false;
9 end

10 return true;
Algorithm 1: NDS filtering with vertex label support.

We extend these ideas in Algorithm 1 by considering an NDS for each label. The algorithm checks whether
a vertex p in the pattern graph can be matched with a vertex t in the target graph. NeighboursUniqueToPattern
tracks the number of neighbours of p that have to be excluded, i.e., whenever the pattern graph has more neigh-
bours with a particular label than the target graph, we can add the difference to NeighboursUniqueToPattern,
and if it ever becomes larger than k, we know that it is impossible to map p to t. The other early exit condition is
the contrapositive of Proposition 5.1. If neither of these conditions is satisfied throughout the for loop that starts
on line 5, then p and t are compatible for this value of k.

As this improvement is an afterthought after the main experiments, the resulting algorithm was run on a
smaller subset of all data: 30,000 instances with 10% labelling. The ECDF plot in Figure 5.1 shows the new
k↓ to be just slightly behind the clique encoding and it outperforms other algorithms in 193 instances, making it
worth consideration for an inclusion in a portfolio, although it might achieve similar results as with unlabelled
graphs, where it wins too infrequently to be a valuable inclusion.

5.2 Algorithm Switching

Given the fact that different algorithms perform best on different instances, one might ask: if algorithm A per-
forms best on some instance I , does A remain best throughout execution, or could it benefit us to switch to a
different algorithm mid-execution? More specifically, we investigate the idea of switching from MCSPLIT to the
clique encoding, hoping that several decisions made by the MCSPLIT algorithm simplify the remaining problem
so much that the corresponding association graph becomes easily solvable by the clique algorithm.
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Figure 5.1: Cumulative plot of all algorithms with 10% vertex labelling.

5.2.1 The Clique Algorithm and its Association Graph

Recall that the clique approach reduces an MCS instance to an association graph. We begin with some prelim-
inary analysis of properties of association graphs and their relationship with the clique algorithm’s running time.
We choose some of the features described in Section 3.2 to record about association graphs. More specifically,
we record features that are easy to compute (since association graphs can get quite big) and can provide mean-
ingful information: number of vertices, number of edges, mean degree, maximum degree, standard deviation of
degrees, and density. We record this information for association graphs created for all unlabelled instances from
Section 2.1 (since the graphs from Section 2.2 often stretch the memory limits) as well as the 30,000 instances
previously selected for experiments with labelled graphs, for all seven labelling percentages. As the timed-out
experiments would make interpreting any results much harder, we remove them from the data and are left with
about 300,000 (instead of about 500,000) observations. The distribution of each feature is plotted in Figure 5.2.

To keep things simple and not violate assumptions about independent variables, we will only consider cor-
relations between the variables instead of trying to fit some kind of a regression model. The Spearman’s rank
correlation coefficients between all measured variables are in Figure 5.3. Note that all variables are positively
correlated: some correlations are very strong, some average, and one very weak (between density and the stand-
ard deviation of degrees). Also note that all measured characteristics of the association graph are positively
correlated with the algorithm’s running time.

After a basic overview of what association graphs are like in terms of their characteristics and correlations
between them, we are ready to tackle the main question of this section: can we predict the instances where the
clique encoding is better than other algorithms based on properties of the association graph? For each of the
six measured properties, we divide its range of values to 100 bins of equal width (some of them turn out to be
empty). For each bin, we plot the proportion of instances in that range with the clique encoding outperforming
other algorithms in Figure 5.4. We can make three observations:

• For all measured properties except density, the clique algorithm is not just overall faster, but also faster
than other algorithms (i.e., more likely to win) with smaller values.

• The situation with density is less clear. Other than higher winning rates with density smaller than 0.3,
density of the association graph tells us little about the algorithm’s winrate.

• Except for the low density values described in the previous point, the clique algorithm’s winning rate stays
below 0.5, meaning that simply looking at each measured property of the association graph is not enough to
identify values of those properties that would provide a clear indication that re-encoding the MCS instance
into an instance of maximum clique would provide clear benefits.
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Figure 5.2: Density plots of the selected features of association graphs and the clique algorithm’s runtime. Note
that the number of edges and runtime were log-transformed in order to improve clarity.
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Figure 5.3: Spearman’s rank correlation coefficients between the measured variables.

Remark 5.1. The reader might notice that some bins start at negative values, even though the feature itself cannot
be negative. This is because the left endpoint of the leftmost interval is defined as

min(X)− 0.001× (max(X)−min(X)),

where X is the set of observed values of some particular feature [54] (and similarly for the right endpoint of the
rightmost interval).

5.2.2 FUSION: MCSPLIT and the Clique Encoding United

Even though we were not able to justify re-encoding a problem instance that is partially solve by MCSPLIT

into the clique encoding using the simple techniques of Section 5.2.1, this section explores the simplest way
of merging the two algorithms, where the clique algorithm overtakes MCSPLIT after making a fixed number of
choices. The hope is that making several decision with MCSPLIT would simplify the association graph enough
to warrant the extra cost in creating the association graph and switching algorithms.

Firstly, we add an additional argument to the Search function of the MCSPLIT algorithm [39] called depth
with a default (initial) value of 0. It is increased by one in the recursive call on line 19 of Algorithm 1 in the
MCSPLIT paper [39] and left unchanged in a different recursive call on line 23.

Secondly, we also add a global parameter DEPTH, which denotes at what value of depth MCSPLIT re-
encodes the remaining problem to a maximum clique instance. A special value of DEPTH = −1 makes FUSION

essentially equal to MCSPLIT in all its behaviour. Similarly, DEPTH = 0 is similar to running the clique
algorithm, but, unlike in the implementation of the clique algorithm, association graph’s creation time is included
as part of total running time.

Lastly, similarly to the∇ operator from Definition 1.15, which creates the association graph from two graphs,
we create a version of ∇ that works on the list of label classes called future in the MCSPLIT paper [39]. The set
of vertices of the association graph is then defined as⋃

〈G,H〉∈future

G×H,

and the edges are defined in exactly the same way as in the original definition.

Given the two new variables depth and DEPTH, we only need to add the following lines of code between
lines 5 and 6 of Algorithm 1 in the MCSPLIT paper [39] to transform MCSPLIT into FUSION:
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Figure 5.4: How often does the clique encoding outperform other algorithms at different values of properties of
the association graph?

1 if DEPTH 6= −1 and depth ≥ DEPTH then
2 |incumbentclique| ← |incumbentMCSPLIT| − |M |;
3 search(∇(future), ∅, ∅, V1);
4 if |M |+ |incumbentclique| > |incumbentMCSPLIT| then

incumbentMCSPLIT ← incumbentMCSPLIT ∪ incumbentclique;
5 end
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Figure 5.5: Cumulative plot of the main three MCS algorithms with two versions of FUSION: FUSION 1 and
FUSION 2, that build the association graph after one and two branching decisions, respectively.

Figure 5.6: Total runtime of each algorithm, for each labelling percentage.

Here, incumbentMCSPLIT and incumbentclique denote the different variables with the same name in the two
algorithms, M and future come from the MCSPLIT algorithm, V1 is the set of vertices of one of the original
graphs, used in the initialisation of the clique algorithm, and search is the main search function of the clique
algorithm [36]. Note that due to how the incumbents are implemented in practice, we set the cardinality of
incumbentclique without having to set the incumbent itself.

The algorithm was run on 10,000 randomly-selected instances with the labelling percentage varying between
5% and 50% (just like in Section 3.1) and the resulting ECDF plot in Figure 5.5 shows that:

• FUSION 2 is strictly worse than FUSION 1. Therefore we do not run experiments with versions of FUSION

that switch algorithms after even more decisions.

• FUSION 1 is second best for very small runtimes, but gradually falls to the 4th place.

• At all points in the plot, FUSION 1 is worse than the original clique encoding.

Figure 5.6 helps to clarify the picture by showing differences in performance of the old and the new al-
gorithms, for each labelling percentage. Keeping in mind that in this plot low total runtime values represent
well-performing algorithms, we can see that the original clique algorithm is better than FUSION 1, which is
better than FUSION 2, for all labelling percentages, except for small differences when all three algorithms’ per-
formance becomes terrible with 5% labelling. Another thing to note is that the differences between these three
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algorithms is highest for average (10%–20%) labelling percentages, and becomes smaller when moving towards
either extreme. This conclusively shows that switching between MCSPLIT and the clique encoding at a certain
depth of the search tree does not produce a competitive algorithm for solving MCS problem instances.

5.2.3 SMARTFUSION: Can We Switch Algorithms in a More Intelligent Manner?

Switching algorithms at a fixed depth of the search tree is one of the simplest possible strategies. In this section we
explore an idea for how the decision whether to switch can be made using running time data of the two algorithms
on various (unsolved) problem instances. For that purpose, we introduce a way to map partially solved instances
inside MCSPLIT into unsolved instances, and prove the method’s correctness. For the rest of this section, consider
an MCS problem instance between graphs G = (VG , EG , µG , ζG) and H = (VH, EH, µH, ζH) with µG : VG →
{0, . . . , N − 1} and µH : VH → {0, . . . , N − 1}. We start by formalising how each algorithm “sees” a problem
instance (obviously, the definitions are heavily based on the two papers describing these algorithms [36, 39]).

Definition 5.3. A MCSPLIT instance is a 5-tuple (future,M, incumbent,G,H), where:

• future = {〈G,H〉 : G ⊆ VG , H ⊆ VH} represents the fact that every vertex in G can only be matched to
vertices in H and vice versa. Initially, future = {〈µ−1G (l), µ−1H (l)〉 : l ∈ µG(VG) ∩ µH(VH)}2.

• M = {(v, w) : v ∈ VG , w ∈ VH} contains the pairs of vertices that have already been matched.

• incumbent = {(v, w) : v ∈ VG , w ∈ VH} is the maximum common subgraph known so far.

• G andH are the original graphs.

We will call this an unsolved MCSPLIT instance if M = ∅ and a partially solved instance otherwise.

Remark 5.2. We include both graphs in the definition to make subsequent observations and statements both
simpler and more useful. In reality, G and H are accessible from inside the MCSPLIT algorithm, although
the information about vertices and vertex labels is already encoded in the future variable, and the information
about edges is stored in two two-dimensional arrays, that can be thought of as functions AG , AH, where AG :
VG ×VG →M({0, . . . , N − 1}) encodes the multiset of labels on edges between any two vertices (and similarly
for AH). We use the notation M(S) to denote the (infinite) set of multisets with elements from S, where each
element of S can be used any number of times. Note that ∅ ∈ M(S), for any set S. For any two u, v ∈ VG ,
AG(u, v) is the multiset image of the edges between u and v under ζG .

Definition 5.4. A clique instance is a tuple (G, incumbent), where G = G ∇H = (V,E) is the association
graph, and incumbent ⊆ V is the maximum clique in the association graph known so far.

An unsolved instance is characterised by a pair of graphs and a non-negative integer (G,H, k). Here, k is used to
set up the initial size of the incumbent. An unsolved instance (G,H, k) can be transformed to a clique instance
(G ∇H, incumbent), and to a MCSPLIT instance (future, ∅, incumbent,G,H), where incumbent is any set of
cardinality k, and future, G, H are all initialised as in Definition 5.3. It is also important to remember from the
previous section that a MCSPLIT instance (future,M, incumbent,G,H) can be transformed into a clique instance
(∇(future), X), where X is any set of cardinality |incumbent| − |M |.

2Technically, in order to account for loops, we would have to have a 〈G,H〉 pair for each unique combination of vertex label and
multiset image of loops under the edge-labelling function (where G 6= ∅ 6= H) (the same way the clique algorithm creates vertices of the
association graph). In order to use more succint notation, and avoid long and convoluted sentences, we will stick with this simplification.
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Definition 5.5. We call a partially solved instance (future,M, incumbent,G,H) equivalent to an unsolved in-
stance (G′,H′, k) if

• MCSPLIT takes the same path of execution on both instances (transforming an unsolved instance into an
unsolved MCSPLIT instance as described earlier),

• and the clique algorithm takes the same path of execution on a clique instance constructed from (G′,H′, k)
as on (∇(future), X), where X is any set of cardinality |incumbent| − |M |.

Proposition 5.2. Let (future,M, incumbent,G,H) be an arbitrary partially solved instance. Order the elements
of future in an arbitrary way: 〈G1, H1〉, . . . , 〈Gn, Hn〉. Let VG′ =

⋃n
i=1Gi. Let EG′ be a subset of EG , where we

remove each edge that has one of its endpoints in VG\VG′ . Let v ∈ VG′ be arbitrary. Then it belongs to exactly one
of G1, . . . , Gn, because all Gi’s are pairwise disjoint [39]. Suppose it is Gj . Let µG′(v) = j − 1. Since v ∈ VG′
was arbitrary, this defines a function µG′ : VG′ → {0, . . . , n − 1}. Finally, let ζG′ = ζG |EG′ . Then the partially
solved instance (future,M, incumbent,G,H) is equivalent to an unsolved instance (G′,H′, |incumbent| − |M |),
where G′ = (VG′ , EG′ , µG′ , ζG′) andH′ is set up in a similar way.

Proof. We begin by considering how MCSPLIT behaves on each of the two instances. The unsolved instance gets
transformed into a MCSPLIT instance (future′, ∅, incumbent′,G′,H′), where incumbent′ is any set of cardinality
|incumbent| − |M |, and future′ = {〈µ−1G′ (l), µ

−1
H′ (l)〉 : l ∈ µG′(VG′) ∩ µH′(VH′)}. We will show that future =

future’ in three steps:

1. First, we show that future and future’ contain the same elements of VG . All vertices of G mentioned in
future’ can be expressed as ⋃

l∈µG′ (VG′ )∩µH′ (VH′ )

µ−1G′ (l). (5.1)

Since

VG′ =

n⋃
i=1

Gi

and µG′(Gi) = {i− 1} by the definitions of VG′ and µG′ ,

µG′(VG′) = µG′

(
n⋃
i=1

Gi

)
= {0, 1, . . . , n− 1}.

Similarly, µH′(VH′) = {0, 1, . . . , n− 1}, and thus µG′(VG′) ∩ µH′(VH′) = {0, 1, . . . , n− 1}. Then (5.1)
can be rewritten as

n−1⋃
l=0

µ−1G′ (l) =

n−1⋃
l=0

Gl+1 =

n⋃
l=1

Gl,

which is exactly what we wanted to prove. A similar argument can show that future and future’ contain the
same elements of VH.

2. Next, we show that two vertices of G′ are in the same G′i if and only if they are in the same Gj . Indeed, for
any v, w ∈ VG′ ,

v, w ∈ G′i ⇐⇒ µG′(v) = µG′(w) ⇐⇒ v, w ∈ GµG′ (v)+1.

Replacing G with H and G withH also gives us an equivalent property for vertices ofH′.
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3. Finally, we show that a similar structure is preserved between a pair of vertices belonging to different
graphs. For any v ∈ VG′ and w ∈ VH′ ,

v ∈ G′i, w ∈ H ′i for some i ⇐⇒ µG′(v) = µH′(w) ⇐⇒ v ∈ GµG′ (v)+1, w ∈ HµG′ (v)+1.

This completes the proof that future = future’.

For two MCSPLIT instances to be equivalent, it remains to show that the algorithm behaves exactly the same
way with (∅, incumbent’), as it does with (M, incumbent). Note that the only places in the algorithm, where
these two variables can affect how the algorithm executes, are in lines 3–5 in the original paper [39], where
we compare |M | with |incumbent| and |M | +

∑
〈G,H〉∈future min(|G|, |H|) with |incumbent|. When replacing

(M, incumbent) with (∅, incumbent’), we replace (|M |, |incumbent|) with (0, |incumbent| − |M |), so lines 3–5
test the same inequalities with |M | subtracted from both sides. Therefore, MCSPLIT executes the two instances
in an identical way.

The clique algorithm accepts the partially solved instance as (∇(future), X), and the unsolved instance as
(G′∇H′, Y ), where X and Y are any two sets of cardinality |incumbent| − |M |. Similarly to the MCSPLIT

situation, the elements in X and Y do not affect the algorithm, as long as their cardinalities match. Thus it
remains to show that∇(future) = G′∇H′. Let∇(future) = (V,E) and G′∇H′ = (V ′, E′). Then

V =

n⋃
i=1

Gi ×Hi,

and

V ′ = {(v, w) ∈ VG′ × VH′ : µG′(v) = µH′(w)}
= {(v, w) ∈ VG′ × VH′ : v ∈ Gi, w ∈ Hi for some i}.

Now since

VG′ =

n⋃
i=1

Gi, VH′ =

n⋃
i=1

Hi,

we get that V ′ = V . The rules for adding edges to the association graphs are the same. They refer to different
graphs, but EG′ , EH′ , ζG′ , and ζH′ are only modified to accomodate the removal of vertices. Therefore, since
V ′ = V and they define what vertices are considered when adding edges to the association graph, E′ = E,
∇(future) = G′∇H′, and the association graph receives equivalent input with the unsolved instance as it does
with the partially solved instance.

To sum up, we showed how the decision about switching algorithms mid-execution could be made based
on the runtime data of the two algorithms on a wide range of instances, while varying the initial size of the
incumbent. It remains an open question as to whether this approach can be implemented in a practical way. The
runtime data might suggest that switching algorithms is never the right call. Otherwise, the choice will depend
on a number of features, and it remains to be seen whether those features can be tracked efficiently, and whether
the extra costs of considering the switch, and actually re-encoding the problem instance are worth the predicted
gains in performance. The list of possible features can even be expanded to consider not just the two graphs of
the unsolved MCS instance, but the corresponding association graph as well.
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Chapter 6

Conclusion and Future Work

We took several competitive algorithms for the MCS problem, and explored how their performance changes with
the number of labels on vertices and edges. Then we constructed an extensive list of features to represent each
pair of graphs, trained three different ML models, and showed two of them to have near-optimal performance,
significantly outperforming previous algorithms. During that process, we uncovered new information on how
labels are typically implemented, the weaknesses of making generalisations about all labelled instances from a
very limited sample, and the distributions and correlations of features in various benchmark datasets. ML models
allowed us to gain further insight into which features are the most important, which algorithm prefers what values
of each feature, and how confidently we can predict when each algorithm should be chosen. We were then able
to build on that knowledge in order to extend one of the algorithms to vertex-labelled instances, and propose
the idea of switching between two algorithms during runtime. We implemented a simple version, capable of
switching algorithms according to a fixed rule, and laid the theoretical groundwork towards making the decision
for when to switch in a more intelligent, ML-based manner. Although a great deal of work has been done, we
would like to end with a few suggestions for constructing new algorithm portfolios, analysing the performance
data of graph algorithms, and building the algorithms of tomorrow.

Firstly, the set of features used for the ML models is far from perfect. A better performance should be
achieved by removing at least a few of the worst-performing features. Many things can be calculated from a
graph, some of them are likely to perform well as new features. In particular, since the standard deviations of
degrees performed so well, other measures of dispersion such as the coefficient of variation should be considered.
As mentioned earlier in the dissertation, considering transformations of feature data might not bring massive
advantages, but could be worthwhile nonetheless.

Secondly, in this project, once we fix the number of different labels in a graph, all labels occur with equal
probabilities. This may not be very representative of real-world data. Hence, along with varying how many
labels a graphs has, one could also consider some probability distribution over the set of possible labels, making
some of them more common than others.

Finally, it would be interesting to see an implementation of SMARTFUSION based on new runtime data. Even
though our proposed model builds two graphs every time it has to make a decision, faster ways are likely to exist,
once the gathered data enables us to see which features are important and should be tracked. Similarly, instead
of creating a new association graph every time, the same graph could be modified. One last question that our ML
models were not particularly successful in answering is “when is MCSPLIT↓ better than MCSPLIT?”
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Appendix A

Plots of Distributions of Features
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Figure A.1: Density plot of the number of loops in graphs from Section 2.2.
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Figure A.2: Plots of how various features are distributed for graphs from Section 2.1.
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Figure A.3: Plots of how various features are distributed for graphs from Section 2.2.
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Figure A.4: Comparison of typical distances between pairs of vertices between the two graph databases, with
graphs from Section 2.1 on the left, and graphs from Section 2.2 on the right.
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Figure A.5: The density plots of log-transformed ratio of the number of vertices between pattern and target
graphs for both databases with graphs from Section 2.1 on the left and graphs from Section 2.2 on the right.
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Figure A.6: The other density plots of the log-transformed ratio features for graphs from Section 2.1.
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Figure A.7: The other density plots of the log-transformed ratio features for graphs from Section 2.2.
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François-Rabelais de Tours, 2016.
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