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What Computers Can and Cannot Do

Produce a schedule for the

nurses at the local hospital.




What Computers Can and Cannot Do

Paint a baroque oil painting of a

raccoon queen vvearing a crown.




What Computers Can and Cannot Do

If | shuffle a deck of n cards,

how many possible outcomes
are there?

Terms and conditions apply.
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(Some of the) Many Ways to Count

H#SAT /WMC

Weighted Model Counting (Chavira and Darwiche 2008)
e Input formula: x V y

e Input weights: w(x) = 0.3, w(—x) = 0.7,
w(y) =0.2, w(-y)=0.8
e Answer (weighted model count):
w(x)w(y) + w(x)w(=y) + w(-x)w(y) = 0.44



(Some of the) Many Ways to Count

#SAT /WMC —— (W)FOMC

From propositional to first-order logic
(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
e Input formula: Vx € A. P(x)

e Input weights: w*(P) =0.3, w=(P) =0.7

e Input domain size(s): |A] =2



(Some of the) Many Ways to Count

#SAT /WMC —— (W)FOMC

From propositional to first-order logic
(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
e Input formula: Vx € A. P(x)

e Input weights: wt(P) =0.3, w(P) =0.7
e Input domain size(s): |A] =2
o Answer: (w*(P))*! = 0.09



(Some of the) Many Ways to Count

WMI WFOMI

=] ]

#SAT /WMC —— (W)FOMC

From propositional to first-order logic

Extensions to Continuous Domains
o Weighted model integration

e (Belle, Passerini and Van den Broeck 2015)

e Weighted first-order model integration
o (Feldstein and Belle 2021)



(Some of the) Many Ways to Count

WMI WFOMI

=] ]

#SAT /WMC —— (W)FOMC

Generalising weights l l
AMC, PBP SP

From propositional to first-order logic

Generalisations of the Weight Function
e Algebraic model counting

o (Kimmig, Van den Broeck and De Raedt 2017)
e From R>( to commutative semirings

e Pseudo-Boolean projection (D. and Belle 2021)

e Weights not necessarily on literals

e Semiring programming (Belle and De Raedt 2020) 3
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Generalising weights l l
AMC, PBP SP

From propositional to first-order logic



(Unweighted) First-Order Model Counting

e Example formula:
Vx € A. P(x) V Q(x).

o Let A= {12},

e Interpretations: all subsets of
{P(1),Q(1),P(2),Q(2) }.



(Unweighted) First-Order Model Counting

e Example formula: P Q
Vx € A. P(x) V Q(x).

o Let A= {1,2}.

e Interpretations: all subsets of

{P(1),Q(1),P(2),Q(2) }-

e Models:
{P(1),P(2) }, {P(1),Q(2) }, {P(1),P(2),Q(2) },
{Q(1),p(2) }, {a(1),0(2) }, {Q(1),p(2),Q(2) },
{P(1),Q(1),P(2) }, {P(1),Q(1),Q(2)}, {P(1),Q(1),P(2),Q(2)}

Intuition
e Each 1l-ary predicate is like a subset.
e For n > 1, each n-ary predicate is like a relation.

e FOMC counts combinations of relations. 4



More Formally: What Is the Input?

Vxel. Vy,ze A. P(x,y) ANP(x,z2) =y ==z

Many-Sorted Function-Free First-Order Logic with Equality
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Many-Sorted Function-Free First-Order Logic with Equality
e Any number of variables

e All variables are bound



More Formally: What Is the Input?

Vxel. Vy,ze A. P(x,y) ANP(x,z2) =y ==z

Many-Sorted Function-Free First-Order Logic with Equality
e Any number of variables
e All variables are bound
e 'V and - quantifiers can be nested arbitrarily deep
e All domains are finite

e Predicates can have any arity



Exact Algorithms for FOMC

e ForcLift (Van den Broeck et al. 2011)
e knowledge compilation to FO d-DNNF
e L2C (Kazemi and Poole 2016)
e knowledge compilation to C+-+ code
e Alchemy (Gogate and Domingos 2016)
e DPLL-style search
e FastWFOMC (van Bremen and KuZelka 2021)
e knowledge compilation to sd-DNNF



Exact Algorithms for FOMC

e ForcLift (Van den Broeck et al. 2011)
e knowledge compilation to FO d-DNNF
e L2C (Kazemi and Poole 2016)
e knowledge compilation to C+-+ code
e Alchemy (Gogate and Domingos 2016)
e DPLL-style search
e FastWFOMC (van Bremen and KuZelka 2021)
e knowledge compilation to sd-DNNF

Our Contribution

Recursion



ForcLift and First-Order Knowledge Compilation

Vx € A. P(x) VQ(x)
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ForcLift and First-Order Knowledge Compilation

Shannon decomposition (a.k.a. Boole's expansion theorem) on Q(c)
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ForcLift and First-Order Knowledge Compilation

Positive unit propagation of (c)
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ForcLift and First-Order Knowledge Compilation

/®\

a(c) —q

c) P
‘<Ut0|0gy /‘ /’
unit clauses

Compilation is complete v/

(¢)




ForcLift and First-Order Knowledge Compilation

Smoothing: propagating atoms upwards
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ForcLift and First-Order Knowledge Compilation
(P(0).2(c))

Smoothing: propagating atoms upwards



ForcLift and First-Order Knowledge Compilation
(P(0).2(c))

Smoothing: adding new atoms



ForcLift and First-Order Knowledge Compilation

P(c) VvV —P(c) —Q(c) P(c)

a(c)

Smoothing: adding new atoms



ForcLift and First-Order Knowledge Compilation

P(c) VvV —P(c) —Q(c) P(c)

Propagating the model count
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ForcLift and First-Order Knowledge Compilation

Propagating the model count
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Suppose this room has 1 seats, and there are m < n people in the
audience. How many ways are there to seat everyone?
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e cach attendee gets exactly one seat,

e and a seat can accommodate at most one person.



A (Slightly) More Complicated Example

Suppose this room has 1 seats, and there are m < n people in the
audience. How many ways are there to seat everyone?

More explicitly, we assume that:

e cach attendee gets exactly one seat,

e and a seat can accommodate at most one person.

Answer: n=n-(n—1)---(n—m+1).

Note: this problem is equivalent to counting [m] — [n] injections.



Let's Express This Problem in Logic!

e Let [ and A be sets (i.e., domains)
e such that |[[| = m, and |A]| = n.

e Let P C [ x A be a relation (i.e., predicate) over I and A.
e We can describe all of the constraints in first-order logic:
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e We can describe all of the constraints in first-order logic:
e each attendee gets a seat (i.e., at least one seat)

Vx eTl. Jy € A P(x,y) (1)
e one person cannot occupy multiple seats
Vx el Vy,ze A. P(x,y)AP(x,2) =y ==z (2)
e one seat cannot accommodate multiple attendees

Vw,x el. Yy € A. P(w,y) AP(x,y)=w=x (3)



Let's Express This Problem in Logic!

e Let [ and A be sets (i.e., domains)
e such that || = m, and |A| = n.

e Let P C [ x A be a relation (i.e., predicate) over I and A.
e We can describe all of the constraints in first-order logic:
e each attendee gets a seat (i.e., at least one seat)

Vx eTl. Jy € A P(x,y) (1)
e one person cannot occupy multiple seats
Vx el Vy,ze A. P(x,y)AP(x,2) =y ==z (2)
e one seat cannot accommodate multiple attendees

Vw,x el. Yy € A. P(w,y) AP(x,y)=w=x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.
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Back to Our Example

The following function counts injections:

1 ifm=0and n=20
f(myn)=<0 if m>0and n=0
f(min—1)+ mx f(m—1,n—1) otherwise.
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Back to Our Example

The following function counts injections:
1 ifm=0and n=0
f(myn)=<0 ifm>0and n=0
f(min—1)+ mx f(m—1,n—1) otherwise.

e f(m,n) can be computed in ©(mn) time
e using dynamic programming.

Optimal time complexity to compute 1 is ©(m).

But ©(mn) is still much better than translating to
propositional logic and solving a #P-complete problem.

The rest of this talk is about how to construct such functions

automatically.

11



First-Order Knowledge Compilation: Before and After

Vx € A. P(x) V Q(x)

Compilation )

( Propagation )« |a| =4

\

m- 12




First-Order Knowledge Compilation: Before and After

Vx € . 3y € A. P(x,y)
Vx € A. P(x) V Q(x) Vx €l Vy,z€ A P(x,y) AP(x,2) =y =2z
Vw,x €. Vy € A. P(w,y) AP(x,y) = w =X

v
Compilation

Conversion

F(m, m) = X0 (7)< 2 x f(m—1,n—1)

Simplification
f(m,n)=f(mn—1)+mx f(m—1,n—1)

Pr ion )i« || =4
ey 1! ' . £(0,0) =1, f(m,0) =0
Evaluation )« =~

b

\

8l

o
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First-Order Knowledge Compilation: Before and After

Vx €T. dy € A. P(x,y)

Vx € A. P(x) V Q(x) Vx €l Vy,z€ A P(x,y) AP(x,2) =y =2z
Vw,x €. Vy € A. P(w,y) AP(x,y) = w =X
¥

Compilation

Conversion

F(m, m) = X0 (7)< 2 x f(m—1,n—1)

Simplification
f(m,n)=f(mn—1)+mx f(m—1,n—1)

Pr ion Al=4
(Bvaluation)~ ", ",

]

i

\

8l

o
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Circuits vs Graphs

Circuits (Van den Broeck et al. 2011)...
e ...extend d-DNNF circuits (Darwiche 2001) for propositional

knowledge compilation with more node types

e .. .are acyclic.
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Circuits vs Graphs

Circuits (Van den Broeck et al. 2011)...
e ...extend d-DNNF circuits (Darwiche 2001) for propositional

knowledge compilation with more node types

e .. .are acyclic.

First-Order Computational Graphs (FCGs) are. ..
directed aeycke (weakly connected) graphs with:

e a single source,
e |abelled nodes,

e and ordered outgoing edges.

13



How to Interpret an FCG
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How to Interpret an FCG

<7>[l<2]><f(m—/,n—1)
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How to Interpret an FCG

f(m,n) = i<7>[1<2]><f(m—/,n—1)

)xf(m—O,n—l)
)xf(m—l,n—l)

[y



How to Interpret an FCG

ﬁmmy:§5<7)w<ﬂxmm—un—n

= ('g) x f(m—0,n—1)

>xam_Ln_n

=f(mn—-1)4+mxf(m—1,n-1)



Compilation: How FCGs Are Built

Definition
A (compilation) rule is a function that takes a formula and returns

a set of (G, L) pairs, where

e G is a (possibly incomplete) FCG,

e and [ is a list of formulas.

The formulas in L are then compiled, and the resulting FCGs are
inserted into G according to a set order.

15



Example Compilation Rule: Independence

Input formula:

(Vx,y e Q. x=y)A (1)
(Vxel. Yy, ze A. P(x,y) AP(x,z) =y = z) A (2)
(Vw,x €T. Vy € A. P(w,y) AP(x,y) = w = x) (3)

16



Example Compilation Rule: Independence

Input formula:

(Vx,y e Q. x=y)A (1)
(Vxel. Yy, ze A. P(x,y) AP(x,z) =y = z) A (2)
(Vw,x €T. Vy € A. P(w,y) AP(x,y) = w = x) (3)

The independence compilation rule returns one (G, L) pair:

G= , L=((1),(2)A(3))

16



New Rule 1/3: Generalised Domain Recursion

Example
Input formula:

Vxel. Vy,ze A. y#z= —P(x,y)V —P(x, z)
Output formula (with a new constant ¢ € I):
Vy,ze A. y #z= —P(c,y) vV —P(c, z)
Vxel. Vy,zeA. x#c Ny #z=
—P(x,y) V =P(x, z)



New Rule 2/3: Constraint Removal

Example
Input formula (with a constant ¢ € I'):

Vxel.Vy,zeA. x#c Ny F#z=
—P(x,y) V =P(x, z)
Yw,x el.Vy eEA. w# cAx#cAw#x=
—P(w,y) vV =P(x,y)
Output formula (with a new domain I" .=\ { ¢ }):

Vx el Vy,ze A. y #z= —P(x,y)V —P(x,z)
Vw,x €. Vy € A. w # x = =P(w,y) V —P(x,y)



New Rule 3/3: Identifying Possibilities for Recursion

Goal
Check if the input formula is equivalent (up to domains)

to a previously encountered formula.

Outline
1. Consider pairs of ‘similar’ clauses.

2. Consider bijections between their sets of variables.

3. Extend each such bijection to a map between sets
of domains.

4. If the bijection makes the clauses equivalent, and
the domain map is compatible with previous domain
maps, move on to another pair of clauses.

17



How These Rules Fit Together (1/5)

Vxel.Vy,ze A. y #z= —P(x,y) V—P(x, z)
Vw,x €. Vy € A. w # x = —P(w,y)V —P(x, y)

'

(Generalised domain recursion)

'

Vy,z€ A. y #z= —P(c,y)V —P(c,2)

Vxel. Vy,ze A. y#zA = —P(x,y) V =P(x, z)
Vxel. VyeA. = —P(c,y) V =P(x,y)
Vw eT. Vy € A. = —P(w,y) V —P(c,y)

Vw,xel. Vye A, w#xA A = —P(w,y) V —P(x,y)

18



How These Rules Fit Together (2/5)

Vy,z€ A. y #z= —P(c,y)V —P(c, z)
Vxel. Vy,ze A. y #zA\x# c= —P(x,y)V —P(x, z)
VxeTl. VyeA x+# c= —P(c,y)V —P(x,y)
Vwel. VyeA w+#c= —-P(w,y)V —P(c,y)
Vw,x el.Vy e A, w#xAw # cAx+#c=—P(w,y)V —P(x,y)

/

(Atom counting and unit propagation>

Y

Vy,ze A y#z= 1
Vxel. Vy,ze A~ y#zAx# c= —P(x,y)V—P(x,z)
Vw,xeT. ¥y e AT, w#xAw#cAx#c=—P(w,y)V-P(x,y) 19




How These Rules Fit Together (3/5)

Vy,ze AT y4z=1
VxeTl. Vy,ze At y #zAx# c= —=P(x,y)V —P(x, 2)
Yw,x el . ¥y e At w#xAw # cAx#c= —P(w,y)V-P(x,y)

/

(Constraint remova D

\

Vy,ze AT y#z= 1
Vx el Vy,ze At y #z= —P(x,y) V-P(x, 2)

Yw,x e I'. Yy € At w# x = =P(w,y) V =P(x, y)

20



How These Rules Fit Together (4/5)

Vy,z € yFz=1
Vxel'. Vy,ze A~. y#z= —P(x,y)V—P(x,2)
Vw,xe . Vy e A~ w#x= —-P(w,y)V —P(x,y)

Independence

/

Vy,z € LyFz= 1

Vxel'. Vy,ze A~. y#z= —P(x,y) V—P(x,2)
Yw,x e ['. Vy € . w# x = —P(w,y)V —-P(x,y)

21



How These Rules Fit Together (5/5): Recursion

Vx el . Vy,ze A, y #z= —P(x,y) V—P(x, 2)
Yw,x e’ Vy € A, w# x= —P(w,y) V—P(x,y)

Vxel.Vy,ze Al y#z= —P(x,y)V —P(x, z)
Vw,x e . Vy € A, w# x = =P(w,y)V —P(x,y)

+

{FTr=T,A— A}

22



Resulting Improvements to Counting Functions

Let [ and A be two sets with cardinalities || = m and |A| = n.
Our new rules enable Crane to efficiently count ' — A functions such as:

e injections in ©(mn) time
e by hand: ©(m)

e partial injections in ©(mn) time
e by hand: ©(min{m.n}?)

e bijections in ©(m) time

e optimall!

23



Resulting Improvements to Counting Functions

Let [ and A be two sets with cardinalities || = m and |A| = n.
Our new rules enable Crane to efficiently count ' — A functions such as:

e injections in ©(mn) time

2 750

e by hand: ©(m) ° ’

£ 500

e partial injections in ©(mn) time g 250
0

e by hand: ©(min{m.n}?)
0 10 20 30 40 50

e bijections in ©(m) time Domain size

e optimall!
e In comparison, FastWFOMC scales as Q(m*).

23
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What Have We Learned?

e Knowledge compilation can build graphs with cycles.

e Graphs (as well as circuits) define functions.
e Cycles can represent recursive calls, including:
e mutual recursion
e and function calls as complex as (n — k — 2).
e Recursion helps us solve counting problems that were
previously beyond the reach of FOMC.
e In some cases, even if a polynomial-time solution is already
known, Crane is able to find more efficient solutions, with a
lower degree polynomial.

25






Beyond First-Order Logic

WMI WFOMI
>

LSAT/WMC —— (W)FOMC —— &

Generalising weights
AMC, PBP SP

From propositional to first-order logic

What kind of logic is needed to succinctly describe, e.g.,

o f(n)=1f(f(n—-1))

e or the Fibonacci sequence?
27



Algebraic Solutions to Parameterised Problems (1/2)

e Suppose we have a Markov logic network that models the
probability /7 that some system will fail.
e Here:

e domain sizes describe the numbers of various components,
e and weights express probabilities that:

e some component fails,
e or some combination of failures leads to another failure.

e Crane can express P as a function of the domain sizes and
weights.

28



Algebraic Solutions to Parameterised Problems (2/2)

With the help of a computer algebra system, we can then:

e determine how P scales with the number of users,

e find combinations of domain sizes that keep P below some
threshold,

e find ranges of weights that keep P sufficiently small across a

range of domain size values.

29



Algebraic Solutions to Parameterised Problems (2/2)

With the help of a computer algebra system, we can then:

e determine how P scales with the number of users,

e find combinations of domain sizes that keep P below some
threshold,
e find ranges of weights that keep P sufficiently small across a

range of domain size values.

Reasoning with functions‘ > ’ Reasoning with numbers
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