
Synthesising Recursive Functions for

First-Order Model Counting

Paulius Dilkas
Joint work with Vaishak Belle (Univeristy of Edinburgh, UK)

DTAI Seminar, 26th May 2023

National University of Singapore, Singapore

What Computers Can and Cannot Do

Vector art by Vecteezy.com

1

What Computers Can and Cannot Do

∫∞
−∞ e−t2 dt

√
π

Vector art by Vecteezy.com

1

What Computers Can and Cannot Do

Produce a schedule for the

nurses at the local hospital.

Vector art by Vecteezy.com

1

What Computers Can and Cannot Do

Paint a baroque oil painting of a

raccoon queen wearing a crown.

Vector art by Vecteezy.com

1

What Computers Can and Cannot Do

If I shuffle a deck of n cards,

how many possible outcomes

are there?

Vector art by Vecteezy.com

Terms and conditions apply.

1

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics

2

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

#SAT (Valiant 1979)
• Input formula: x ∨ y

• Interpretations: ∅, { x }, { y }, { x , y }
• Models: { x }, { y }, { x , y }

• Answer (model count): 3

3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

#SAT (Valiant 1979)
• Input formula: x ∨ y

• Interpretations: ∅, { x }, { y }, { x , y }
• Models: { x }, { y }, { x , y }
• Answer (model count): 3

3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Weighted Model Counting (Chavira and Darwiche 2008)
• Input formula: x ∨ y

• Input weights: w(x) = 0.3, w(¬x) = 0.7,

w(y) = 0.2, w(¬y) = 0.8

• Answer (weighted model count):

w(x)w(y) + w(x)w(¬y) + w(¬x)w(y) = 0.44

3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Weighted Model Counting (Chavira and Darwiche 2008)
• Input formula: x ∨ y

• Input weights: w(x) = 0.3, w(¬x) = 0.7,

w(y) = 0.2, w(¬y) = 0.8

• Answer (weighted model count):

w(x)w(y) + w(x)w(¬y) + w(¬x)w(y) = 0.44
3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
• Input formula: ∀x ∈ ∆. P(x)

• Input weights: w+(P) = 0.3, w−(P) = 0.7

• Input domain size(s): |∆| = 2

• Answer: (w+(P))
|∆|

= 0.09

3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
• Input formula: ∀x ∈ ∆. P(x)

• Input weights: w+(P) = 0.3, w−(P) = 0.7

• Input domain size(s): |∆| = 2

• Answer: (w+(P))
|∆|

= 0.09
3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Extensions to Continuous Domains
• Weighted model integration

• (Belle, Passerini and Van den Broeck 2015)

• Weighted first-order model integration

• (Feldstein and Belle 2021)

3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Generalisations of the Weight Function
• Algebraic model counting

• (Kimmig, Van den Broeck and De Raedt 2017)

• From R≥0 to commutative semirings

• Pseudo-Boolean projection (D. and Belle 2021)

• Weights not necessarily on literals

• Semiring programming (Belle and De Raedt 2020) 3

(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

3

(Unweighted) First-Order Model Counting

• Example formula:

∀x ∈ ∆. P(x) ∨ Q(x).

• Let ∆ := { 1, 2 }.
• Interpretations: all subsets of

{ P(1), Q(1), P(2), Q(2) }.

• Models:

{ P(1), P(2) }, { P(1), Q(2) }, { P(1), P(2), Q(2) },
{ Q(1), P(2) }, { Q(1), Q(2) }, { Q(1), P(2), Q(2) },

{ P(1), Q(1), P(2) }, { P(1), Q(1), Q(2) }, { P(1), Q(1), P(2), Q(2) }.

Intuition

• Each 1-ary predicate is like a subset.

• For n > 1, each n-ary predicate is like a relation.

• FOMC counts combinations of relations.

P Q

4

(Unweighted) First-Order Model Counting

• Example formula:

∀x ∈ ∆. P(x) ∨ Q(x).

• Let ∆ := { 1, 2 }.
• Interpretations: all subsets of

{ P(1), Q(1), P(2), Q(2) }.
• Models:

{ P(1), P(2) }, { P(1), Q(2) }, { P(1), P(2), Q(2) },
{ Q(1), P(2) }, { Q(1), Q(2) }, { Q(1), P(2), Q(2) },

{ P(1), Q(1), P(2) }, { P(1), Q(1), Q(2) }, { P(1), Q(1), P(2), Q(2) }.

Intuition

• Each 1-ary predicate is like a subset.

• For n > 1, each n-ary predicate is like a relation.

• FOMC counts combinations of relations.

P Q

4

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity

5

Exact Algorithms for FOMC

• ForcLift (Van den Broeck et al. 2011)

• knowledge compilation to FO d-DNNF

• L2C (Kazemi and Poole 2016)

• knowledge compilation to C++ code

• Alchemy (Gogate and Domingos 2016)

• DPLL-style search

• FastWFOMC (van Bremen and Kuželka 2021)

• knowledge compilation to sd-DNNF

Our Contribution

ForcLift

+

Recursion

=

Crane

6

Exact Algorithms for FOMC

• ForcLift (Van den Broeck et al. 2011)

• knowledge compilation to FO d-DNNF

• L2C (Kazemi and Poole 2016)

• knowledge compilation to C++ code

• Alchemy (Gogate and Domingos 2016)

• DPLL-style search

• FastWFOMC (van Bremen and Kuželka 2021)

• knowledge compilation to sd-DNNF

Our Contribution

ForcLift

+

Recursion

=

Crane

6

ForcLift and First-Order Knowledge Compilation

∀x ∈ ∆. P(x) ∨ Q(x)

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

7

ForcLift and First-Order Knowledge Compilation

∀x ∈ ∆. P(x) ∨ Q(x)

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Independent partial grounding (introduces a constant c ∈ ∆)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Independent partial grounding (introduces a constant c ∈ ∆)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Shannon decomposition (a.k.a. Boole’s expansion theorem) on Q(c)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Shannon decomposition (a.k.a. Boole’s expansion theorem) on Q(c)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Positive unit propagation of Q(c)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Positive unit propagation of Q(c)

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Negative unit propagation of ¬Q(c)
7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Negative unit propagation of ¬Q(c)
7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

unit clauses

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Compilation is complete ✓

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: adding new atoms

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Smoothing: adding new atoms

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2 + 1 = 3

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7

ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2 + 1 = 3

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7

A (Slightly) More Complicated Example

Suppose this room has n seats, and there are m ≤ n people in the

audience. How many ways are there to seat everyone?

More explicitly, we assume that:

• each attendee gets exactly one seat,

• and a seat can accommodate at most one person.

Answer: nm = n · (n − 1) · · · (n −m + 1).

Note: this problem is equivalent to counting [m] → [n] injections.

8

A (Slightly) More Complicated Example

Suppose this room has n seats, and there are m ≤ n people in the

audience. How many ways are there to seat everyone?

More explicitly, we assume that:

• each attendee gets exactly one seat,

• and a seat can accommodate at most one person.

Answer: nm = n · (n − 1) · · · (n −m + 1).

Note: this problem is equivalent to counting [m] → [n] injections.

8

A (Slightly) More Complicated Example

Suppose this room has n seats, and there are m ≤ n people in the

audience. How many ways are there to seat everyone?

More explicitly, we assume that:

• each attendee gets exactly one seat,

• and a seat can accommodate at most one person.

Answer: nm = n · (n − 1) · · · (n −m + 1).

Note: this problem is equivalent to counting [m] → [n] injections.

8

Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9

Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9

Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9

Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9

Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9

Recursion

10

Back to Our Example

The following function counts injections:

f (m, n) =

1 if m = 0 and n = 0

0 if m > 0 and n = 0

f (m, n − 1) +m × f (m − 1, n − 1) otherwise.

• f (m, n) can be computed in Θ(mn) time

• using dynamic programming.

• Optimal time complexity to compute nm is Θ(m).

• But Θ(mn) is still much better than translating to

propositional logic and solving a #P-complete problem.

• The rest of this talk is about how to construct such functions

automatically.

11

Back to Our Example

The following function counts injections:

f (m, n) =

1 if m = 0 and n = 0

0 if m > 0 and n = 0

f (m, n − 1) +m × f (m − 1, n − 1) otherwise.

• f (m, n) can be computed in Θ(mn) time

• using dynamic programming.

• Optimal time complexity to compute nm is Θ(m).

• But Θ(mn) is still much better than translating to

propositional logic and solving a #P-complete problem.

• The rest of this talk is about how to construct such functions

automatically.

11

Back to Our Example

The following function counts injections:

f (m, n) =

1 if m = 0 and n = 0

0 if m > 0 and n = 0

f (m, n − 1) +m × f (m − 1, n − 1) otherwise.

• f (m, n) can be computed in Θ(mn) time

• using dynamic programming.

• Optimal time complexity to compute nm is Θ(m).

• But Θ(mn) is still much better than translating to

propositional logic and solving a #P-complete problem.

• The rest of this talk is about how to construct such functions

automatically.

11

Back to Our Example

The following function counts injections:

f (m, n) =

1 if m = 0 and n = 0

0 if m > 0 and n = 0

f (m, n − 1) +m × f (m − 1, n − 1) otherwise.

• f (m, n) can be computed in Θ(mn) time

• using dynamic programming.

• Optimal time complexity to compute nm is Θ(m).

• But Θ(mn) is still much better than translating to

propositional logic and solving a #P-complete problem.

• The rest of this talk is about how to construct such functions

automatically.

11

First-Order Knowledge Compilation: Before and After

∀x ∈ ∆. P(x) ∨ Q(x)

Compilation

Propagation |∆| = 4

∀x ∈ Γ. ∃y ∈ ∆. P(x, y)

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z) ⇒ y = z

∀w, x ∈ Γ. ∀y ∈ ∆. P(w, y) ∧ P(x, y) ⇒ w = x

Compilation

Conversion

f (m, n) =
∑m

l=0

(
m
l

)
[l < 2] × f (m − l, n − 1)

Simplification

f (m, n) = f (m, n − 1) + m × f (m − 1, n − 1)

Evaluation
f (0, 0) = 1, f (m, 0) = 0

m = 2, n = 7

12

First-Order Knowledge Compilation: Before and After

∀x ∈ ∆. P(x) ∨ Q(x)

Compilation

Propagation |∆| = 4

∀x ∈ Γ. ∃y ∈ ∆. P(x, y)

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z) ⇒ y = z

∀w, x ∈ Γ. ∀y ∈ ∆. P(w, y) ∧ P(x, y) ⇒ w = x

Compilation

Conversion

f (m, n) =
∑m

l=0

(
m
l

)
[l < 2] × f (m − l, n − 1)

Simplification

f (m, n) = f (m, n − 1) + m × f (m − 1, n − 1)

Evaluation
f (0, 0) = 1, f (m, 0) = 0

m = 2, n = 7

12

First-Order Knowledge Compilation: Before and After

∀x ∈ ∆. P(x) ∨ Q(x)

Compilation

Propagation |∆| = 4

∀x ∈ Γ. ∃y ∈ ∆. P(x, y)

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z) ⇒ y = z

∀w, x ∈ Γ. ∀y ∈ ∆. P(w, y) ∧ P(x, y) ⇒ w = x

Compilation

Conversion

f (m, n) =
∑m

l=0

(
m
l

)
[l < 2] × f (m − l, n − 1)

Simplification

f (m, n) = f (m, n − 1) + m × f (m − 1, n − 1)

Evaluation
f (0, 0) = 1, f (m, 0) = 0

m = 2, n = 7

12

Circuits vs Graphs

Circuits (Van den Broeck et al. 2011). . .

• . . . extend d-DNNF circuits (Darwiche 2001) for propositional

knowledge compilation with more node types

• . . . are acyclic.

First-Order Computational Graphs (FCGs) are. . .
directed acyclic (weakly connected) graphs with:

• a single source,

• labelled nodes,

• and ordered outgoing edges.

13

Circuits vs Graphs

Circuits (Van den Broeck et al. 2011). . .

• . . . extend d-DNNF circuits (Darwiche 2001) for propositional

knowledge compilation with more node types

• . . . are acyclic.

First-Order Computational Graphs (FCGs) are. . .
directed acyclic (weakly connected) graphs with:

• a single source,

• labelled nodes,

• and ordered outgoing edges.

13

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =

m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)

[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)

[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)

[l < 2]

×

f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]×

f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ

14

Compilation: How FCGs Are Built

Definition
A (compilation) rule is a function that takes a formula and returns

a set of (G , L) pairs, where

• G is a (possibly incomplete) FCG,

• and L is a list of formulas.

The formulas in L are then compiled, and the resulting FCGs are

inserted into G according to a set order.

15

Example Compilation Rule: Independence

Input formula:

(∀x , y ∈ Ω. x = y) ∧ (1)

(∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z) ∧ (2)

(∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x) (3)

The independence compilation rule returns one (G, L) pair:

G =

∧

⋆ ⋆

, L = ⟨(1), (2) ∧ (3)⟩

16

Example Compilation Rule: Independence

Input formula:

(∀x , y ∈ Ω. x = y) ∧ (1)

(∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z) ∧ (2)

(∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x) (3)

The independence compilation rule returns one (G, L) pair:

G =

∧

⋆ ⋆

, L = ⟨(1), (2) ∧ (3)⟩

16

New Rule 1/3: Generalised Domain Recursion

Example
Input formula:

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)

Output formula (with a new constant c ∈ Γ):

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c, z)

∀x ∈ Γ. ∀y , z ∈ ∆. x ̸= c ∧ y ̸= z ⇒
¬P(x , y) ∨ ¬P(x , z)

17

New Rule 2/3: Constraint Removal

Example
Input formula (with a constant c ∈ Γ):

∀x ∈ Γ. ∀y , z ∈ ∆. x ̸= c ∧ y ̸= z ⇒
¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= c ∧ x ̸= c ∧ w ̸= x ⇒
¬P(w , y) ∨ ¬P(x , y)

Output formula (with a new domain Γ′ := Γ \ { c }):

∀x ∈ Γ′. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

17

New Rule 3/3: Identifying Possibilities for Recursion

Goal
Check if the input formula is equivalent (up to domains)

to a previously encountered formula.

Outline
1. Consider pairs of ‘similar’ clauses.

2. Consider bijections between their sets of variables.

3. Extend each such bijection to a map between sets

of domains.

4. If the bijection makes the clauses equivalent, and

the domain map is compatible with previous domain

maps, move on to another pair of clauses.

17

How These Rules Fit Together (1/5)

Generalised domain recursion

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c , z)
∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀x ∈ Γ. ∀y ∈ ∆. x ̸= c ⇒ ¬P(c , y) ∨ ¬P(x , y)
∀w ∈ Γ. ∀y ∈ ∆. w ̸= c ⇒ ¬P(w , y) ∨ ¬P(c, y)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

18

How These Rules Fit Together (2/5)

Atom counting and unit propagation

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c , z)
∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀x ∈ Γ. ∀y ∈ ∆. x ̸= c ⇒ ¬P(c , y) ∨ ¬P(x , y)
∀w ∈ Γ. ∀y ∈ ∆. w ̸= c ⇒ ¬P(w , y) ∨ ¬P(c, y)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ. ∀y , z ∈ ∆⊥. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆⊥. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y) 19

How These Rules Fit Together (3/5)

Constraint removal

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ. ∀y , z ∈ ∆⊥. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆⊥. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

20

How These Rules Fit Together (4/5)

Independence

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥

∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

21

How These Rules Fit Together (5/5): Recursion

=

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

+

{ Γ 7→ Γ′,∆ 7→ ∆⊥ }

22

Resulting Improvements to Counting Functions

Let Γ and ∆ be two sets with cardinalities |Γ| = m and |∆| = n.

Our new rules enable Crane to efficiently count Γ → ∆ functions such as:

• injections in Θ(mn) time

• by hand: Θ(m)

• partial injections in Θ(mn) time

• by hand: Θ(min{m, n }2)

• bijections in Θ(m) time

• optimal!

• In comparison, FastWFOMC scales as Ω(m4).

0

250

500

750

0 10 20 30 40 50

Domain size

R
u
n
ti
m
e
(s
)

23

Resulting Improvements to Counting Functions

Let Γ and ∆ be two sets with cardinalities |Γ| = m and |∆| = n.

Our new rules enable Crane to efficiently count Γ → ∆ functions such as:

• injections in Θ(mn) time

• by hand: Θ(m)

• partial injections in Θ(mn) time

• by hand: Θ(min{m, n }2)

• bijections in Θ(m) time

• optimal!

• In comparison, FastWFOMC scales as Ω(m4).

0

250

500

750

0 10 20 30 40 50

Domain size

R
u
n
ti
m
e
(s
)

23

Source: NASA

What Have We Learned?

• Knowledge compilation can build graphs with cycles.

• Graphs (as well as circuits) define functions.

• Cycles can represent recursive calls, including:

• mutual recursion

• and function calls as complex as f (n − k − 2).

• Recursion helps us solve counting problems that were

previously beyond the reach of FOMC.

• In some cases, even if a polynomial-time solution is already

known, Crane is able to find more efficient solutions, with a

lower degree polynomial.

25

Beyond First-Order Logic

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

What kind of logic is needed to succinctly describe, e.g.,

• f (n) = f (f (n − 1))

• or the Fibonacci sequence?
27

Algebraic Solutions to Parameterised Problems (1/2)

• Suppose we have a Markov logic network that models the

probability P that some system will fail.

• Here:

• domain sizes describe the numbers of various components,

• and weights express probabilities that:

• some component fails,

• or some combination of failures leads to another failure.

• Crane can express P as a function of the domain sizes and

weights.

28

Algebraic Solutions to Parameterised Problems (2/2)

With the help of a computer algebra system, we can then:

• determine how P scales with the number of users,

• find combinations of domain sizes that keep P below some

threshold,

• find ranges of weights that keep P sufficiently small across a

range of domain size values.

Reasoning with functions > Reasoning with numbers

29

Algebraic Solutions to Parameterised Problems (2/2)

With the help of a computer algebra system, we can then:

• determine how P scales with the number of users,

• find combinations of domain sizes that keep P below some

threshold,

• find ranges of weights that keep P sufficiently small across a

range of domain size values.

Reasoning with functions > Reasoning with numbers

29

