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What Computers Can and Cannot Do

Produce a schedule for the

nurses at the local hospital.
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What Computers Can and Cannot Do

Paint a baroque oil painting of a

raccoon queen wearing a crown.
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What Computers Can and Cannot Do

If I shuffle a deck of n cards,

how many possible outcomes

are there?

Vector art by Vecteezy.com

Terms and conditions apply.
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Who Cares About Counting?

Probabilistic Programming

Neuro-symbolic AI

Natural Language Processing

Robotics

Bioinformatics

Combinatorics
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

#SAT (Valiant 1979)
• Input formula: x ∨ y

• Interpretations: ∅, { x }, { y }, { x , y }
• Models: { x }, { y }, { x , y }

• Answer (model count): 3
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Weighted Model Counting (Chavira and Darwiche 2008)
• Input formula: x ∨ y

• Input weights: w(x) = 0.3, w(¬x) = 0.7,

w(y) = 0.2, w(¬y) = 0.8

• Answer (weighted model count):

w(x)w(y) + w(x)w(¬y) + w(¬x)w(y) = 0.44
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
• Input formula: ∀x ∈ ∆. P(x)

• Input weights: w+(P) = 0.3, w−(P) = 0.7

• Input domain size(s): |∆| = 2

• Answer: (w+(P))
|∆|

= 0.09
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

(Weighted) (Symmetric) First-Order Model Counting

(Van den Broeck et al. 2011)
• Input formula: ∀x ∈ ∆. P(x)

• Input weights: w+(P) = 0.3, w−(P) = 0.7

• Input domain size(s): |∆| = 2

• Answer: (w+(P))
|∆|

= 0.09
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Extensions to Continuous Domains
• Weighted model integration

• (Belle, Passerini and Van den Broeck 2015)

• Weighted first-order model integration

• (Feldstein and Belle 2021)
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(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

Generalisations of the Weight Function
• Algebraic model counting

• (Kimmig, Van den Broeck and De Raedt 2017)

• From R≥0 to commutative semirings

• Pseudo-Boolean projection (D. and Belle 2021)

• Weights not necessarily on literals

• Semiring programming (Belle and De Raedt 2020) 3



(Some of the) Many Ways to Count

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic
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(Unweighted) First-Order Model Counting

• Example formula:

∀x ∈ ∆. P(x) ∨ Q(x).

• Let ∆ := { 1, 2 }.
• Interpretations: all subsets of

{ P(1), Q(1), P(2), Q(2) }.

• Models:

{ P(1), P(2) }, { P(1), Q(2) }, { P(1), P(2), Q(2) },
{ Q(1), P(2) }, { Q(1), Q(2) }, { Q(1), P(2), Q(2) },

{ P(1), Q(1), P(2) }, { P(1), Q(1), Q(2) }, { P(1), Q(1), P(2), Q(2) }.

Intuition

• Each 1-ary predicate is like a subset.

• For n > 1, each n-ary predicate is like a relation.

• FOMC counts combinations of relations.

P Q
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More Formally: What Is the Input?

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z

Many-Sorted Function-Free First-Order Logic with Equality

• Any number of variables

• All variables are bound

• ∀ and ∃ quantifiers can be nested arbitrarily deep

• All domains are finite

• Predicates can have any arity
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Exact Algorithms for FOMC

• ForcLift (Van den Broeck et al. 2011)

• knowledge compilation to FO d-DNNF

• L2C (Kazemi and Poole 2016)

• knowledge compilation to C++ code

• Alchemy (Gogate and Domingos 2016)

• DPLL-style search

• FastWFOMC (van Bremen and Kuželka 2021)

• knowledge compilation to sd-DNNF

Our Contribution

ForcLift

+

Recursion

=

Crane
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ForcLift and First-Order Knowledge Compilation

∀x ∈ ∆. P(x) ∨ Q(x)

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

7



ForcLift and First-Order Knowledge Compilation

∀x ∈ ∆. P(x) ∨ Q(x)

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Independent partial grounding (introduces a constant c ∈ ∆)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Independent partial grounding (introduces a constant c ∈ ∆)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

P(c) ∨ Q(c)

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Shannon decomposition (a.k.a. Boole’s expansion theorem) on Q(c)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Shannon decomposition (a.k.a. Boole’s expansion theorem) on Q(c)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

Q(c)

P(c) ∨ Q(c)

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Positive unit propagation of Q(c)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Positive unit propagation of Q(c)

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

¬Q(c)
P(c) ∨ Q(c)

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Negative unit propagation of ¬Q(c)
7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Negative unit propagation of ¬Q(c)
7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

unit clauses

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Compilation is complete ✓

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: propagating atoms upwards

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

Q(c) ⊤

Q(c) ⊤

∧

¬Q(c) P(c)

{ P(c), Q(c) }

{ P(c), Q(c) }

{ Q(c) }

2

1× 1 = 1

tautology

1 1

{ P(c), Q(c) }

1 1

Smoothing: adding new atoms

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Smoothing: adding new atoms

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2 + 1 = 3

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7



ForcLift and First-Order Knowledge Compilation

∧
c∈∆

∨

∧

P(c) ∨ ¬P(c) ∧

Q(c) ⊤

∧

¬Q(c) P(c)

3|∆|

2 + 1 = 3

2× 1 = 2

2

1× 1 = 1

tautology

1 1

1× 1 = 1

1 1

Propagating the model count

7



A (Slightly) More Complicated Example

Suppose this room has n seats, and there are m ≤ n people in the

audience. How many ways are there to seat everyone?

More explicitly, we assume that:

• each attendee gets exactly one seat,

• and a seat can accommodate at most one person.

Answer: nm = n · (n − 1) · · · (n −m + 1).

Note: this problem is equivalent to counting [m] → [n] injections.
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Let’s Express This Problem in Logic!

• Let Γ and ∆ be sets (i.e., domains)

• such that |Γ| = m, and |∆| = n.

• Let P ⊆ Γ×∆ be a relation (i.e., predicate) over Γ and ∆.

• We can describe all of the constraints in first-order logic:

• each attendee gets a seat (i.e., at least one seat)

∀x ∈ Γ. ∃y ∈ ∆. P(x , y) (1)

• one person cannot occupy multiple seats

∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z (2)

• one seat cannot accommodate multiple attendees

∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x (3)

(1) and (2) constrain P to be a function, and (3) makes it injective.

9
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Recursion
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Back to Our Example

The following function counts injections:

f (m, n) =


1 if m = 0 and n = 0

0 if m > 0 and n = 0

f (m, n − 1) +m × f (m − 1, n − 1) otherwise.

• f (m, n) can be computed in Θ(mn) time

• using dynamic programming.

• Optimal time complexity to compute nm is Θ(m).

• But Θ(mn) is still much better than translating to

propositional logic and solving a #P-complete problem.

• The rest of this talk is about how to construct such functions

automatically.
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First-Order Knowledge Compilation: Before and After

∀x ∈ ∆. P(x) ∨ Q(x)

Compilation

Propagation |∆| = 4

∀x ∈ Γ. ∃y ∈ ∆. P(x, y)

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z) ⇒ y = z

∀w, x ∈ Γ. ∀y ∈ ∆. P(w, y) ∧ P(x, y) ⇒ w = x

Compilation

Conversion

f (m, n) =
∑m

l=0

(
m
l

)
[l < 2] × f (m − l, n − 1)

Simplification

f (m, n) = f (m, n − 1) + m × f (m − 1, n − 1)

Evaluation
f (0, 0) = 1, f (m, 0) = 0

m = 2, n = 7
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Circuits vs Graphs

Circuits (Van den Broeck et al. 2011). . .

• . . . extend d-DNNF circuits (Darwiche 2001) for propositional

knowledge compilation with more node types

• . . . are acyclic.

First-Order Computational Graphs (FCGs) are. . .
directed acyclic (weakly connected) graphs with:

• a single source,

• labelled nodes,

• and ordered outgoing edges.
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How to Interpret an FCG

GDR

∨
CR

∧

⊥ Ref

Generalised domain recursion

Deterministic set-disjunction

Constraint removal

Decomposable conjunction

Caching

Contradiction

f (m, n) =
m∑
l=0

(
m

l

)
[l < 2]× f (m − l , n − 1)

=

(
m

0

)
× f (m − 0, n − 1)

+

(
m

1

)
× f (m − 1, n − 1)

= f (m, n − 1) +m × f (m − 1, n − 1)

[ϕ] =

1 if ϕ

0 if ¬ϕ
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Compilation: How FCGs Are Built

Definition
A (compilation) rule is a function that takes a formula and returns

a set of (G , L) pairs, where

• G is a (possibly incomplete) FCG,

• and L is a list of formulas.

The formulas in L are then compiled, and the resulting FCGs are

inserted into G according to a set order.

15



Example Compilation Rule: Independence

Input formula:

(∀x , y ∈ Ω. x = y) ∧ (1)

(∀x ∈ Γ. ∀y , z ∈ ∆. P(x , y) ∧ P(x , z) ⇒ y = z) ∧ (2)

(∀w , x ∈ Γ. ∀y ∈ ∆. P(w , y) ∧ P(x , y) ⇒ w = x) (3)

The independence compilation rule returns one (G, L) pair:

G =

∧

⋆ ⋆

, L = ⟨(1), (2) ∧ (3)⟩
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New Rule 1/3: Generalised Domain Recursion

Example
Input formula:

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)

Output formula (with a new constant c ∈ Γ):

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c, z)

∀x ∈ Γ. ∀y , z ∈ ∆. x ̸= c ∧ y ̸= z ⇒
¬P(x , y) ∨ ¬P(x , z)
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New Rule 2/3: Constraint Removal

Example
Input formula (with a constant c ∈ Γ):

∀x ∈ Γ. ∀y , z ∈ ∆. x ̸= c ∧ y ̸= z ⇒
¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= c ∧ x ̸= c ∧ w ̸= x ⇒
¬P(w , y) ∨ ¬P(x , y)

Output formula (with a new domain Γ′ := Γ \ { c }):

∀x ∈ Γ′. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)
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New Rule 3/3: Identifying Possibilities for Recursion

Goal
Check if the input formula is equivalent (up to domains)

to a previously encountered formula.

Outline
1. Consider pairs of ‘similar’ clauses.

2. Consider bijections between their sets of variables.

3. Extend each such bijection to a map between sets

of domains.

4. If the bijection makes the clauses equivalent, and

the domain map is compatible with previous domain

maps, move on to another pair of clauses.
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How These Rules Fit Together (1/5)

Generalised domain recursion

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c , z)
∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀x ∈ Γ. ∀y ∈ ∆. x ̸= c ⇒ ¬P(c , y) ∨ ¬P(x , y)
∀w ∈ Γ. ∀y ∈ ∆. w ̸= c ⇒ ¬P(w , y) ∨ ¬P(c, y)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

18



How These Rules Fit Together (2/5)

Atom counting and unit propagation

∀y , z ∈ ∆. y ̸= z ⇒ ¬P(c , y) ∨ ¬P(c , z)
∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀x ∈ Γ. ∀y ∈ ∆. x ̸= c ⇒ ¬P(c , y) ∨ ¬P(x , y)
∀w ∈ Γ. ∀y ∈ ∆. w ̸= c ⇒ ¬P(w , y) ∨ ¬P(c, y)

∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ. ∀y , z ∈ ∆⊥. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆⊥. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y) 19



How These Rules Fit Together (3/5)

Constraint removal

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ. ∀y , z ∈ ∆⊥. y ̸= z ∧ x ̸= c ⇒ ¬P(x , y) ∨ ¬P(x , z)

∀w , x ∈ Γ. ∀y ∈ ∆⊥. w ̸= x ∧ w ̸= c ∧ x ̸= c ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

20



How These Rules Fit Together (4/5)

Independence

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥
∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀y , z ∈ ∆⊤. y ̸= z ⇒ ⊥

∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)
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How These Rules Fit Together (5/5): Recursion

=

∀x ∈ Γ. ∀y , z ∈ ∆. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ. ∀y ∈ ∆. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

∀x ∈ Γ′. ∀y , z ∈ ∆⊥. y ̸= z ⇒ ¬P(x , y) ∨ ¬P(x , z)
∀w , x ∈ Γ′. ∀y ∈ ∆⊥. w ̸= x ⇒ ¬P(w , y) ∨ ¬P(x , y)

+

{ Γ 7→ Γ′,∆ 7→ ∆⊥ }

22



Resulting Improvements to Counting Functions

Let Γ and ∆ be two sets with cardinalities |Γ| = m and |∆| = n.

Our new rules enable Crane to efficiently count Γ → ∆ functions such as:

• injections in Θ(mn) time

• by hand: Θ(m)

• partial injections in Θ(mn) time

• by hand: Θ(min{m, n }2)

• bijections in Θ(m) time

• optimal!

• In comparison, FastWFOMC scales as Ω(m4).
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Source: NASA



What Have We Learned?

• Knowledge compilation can build graphs with cycles.

• Graphs (as well as circuits) define functions.

• Cycles can represent recursive calls, including:

• mutual recursion

• and function calls as complex as f (n − k − 2).

• Recursion helps us solve counting problems that were

previously beyond the reach of FOMC.

• In some cases, even if a polynomial-time solution is already

known, Crane is able to find more efficient solutions, with a

lower degree polynomial.

25





Beyond First-Order Logic

WMI WFOMI

#SAT/WMC (W)FOMC

AMC,PBP SP

∑
→

∫

Generalising weights

From propositional to first-order logic

What kind of logic is needed to succinctly describe, e.g.,

• f (n) = f (f (n − 1))

• or the Fibonacci sequence?
27



Algebraic Solutions to Parameterised Problems (1/2)

• Suppose we have a Markov logic network that models the

probability P that some system will fail.

• Here:

• domain sizes describe the numbers of various components,

• and weights express probabilities that:

• some component fails,

• or some combination of failures leads to another failure.

• Crane can express P as a function of the domain sizes and

weights.

28



Algebraic Solutions to Parameterised Problems (2/2)

With the help of a computer algebra system, we can then:

• determine how P scales with the number of users,

• find combinations of domain sizes that keep P below some

threshold,

• find ranges of weights that keep P sufficiently small across a

range of domain size values.

Reasoning with functions > Reasoning with numbers
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