
Towards Practical First-Order Model Counting

Ananth K. Kidambi
1

Guramrit Singh
1 Paulius Dilkas2,3

Kuldeep S. Meel
4,2

1
IIT Bombay, India

2
University of Toronto, Canada

3
Vector Institute, Canada

4
Georgia Tech, USA

SAT 2025

1 / 16

Motivation

Example Setting

▶ Let ∆ be a set of cardinality n ∈ N0

▶ Suppose we want to count all P ⊆ ∆2
(as a function of n) that

are:

▶ functions,

▶ bijections,

▶ partial orders,

▶ symmetric,

▶ transitive,

▶ etc.

� Propositional model counting (#SAT) is #P-complete

� But many of these counting problems have efficient solutions

▶ And we can find them using first-order model counting

▶ i.e., reasoning about sets, subsets, and arbitrary elements

without grounding them

2 / 16

Motivation

Example Setting

▶ Let ∆ be a set of cardinality n ∈ N0

▶ Suppose we want to count all P ⊆ ∆2
(as a function of n) that

are:

▶ functions,

▶ bijections,

▶ partial orders,

▶ symmetric,

▶ transitive,

▶ etc.

� Propositional model counting (#SAT) is #P-complete

� But many of these counting problems have efficient solutions

▶ And we can find them using first-order model counting

▶ i.e., reasoning about sets, subsets, and arbitrary elements

without grounding them

2 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

More Formally: What Is the Input?

Example Input Sentence

∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z

Many-Sorted Function-Free First-Order Logic with Equality

▶ Any number of variables and constants

▶ ∃ and ∀ quantifiers can be nested arbitrarily deeply

▶ All domains are finite

▶ Solutions are functions that take domain sizes as inputs

▶ Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)

▶ Each predicate acts like a subset

▶ of a domain or a Cartesian product of domains

▶ Goal: count combinations of subsets that satisfy the sentence

3 / 16

Exact Algorithms for FOMC

Predecessors of This Work

▶ ForcLift (Van den Broeck et al. 2011)

▶ knowledge compilation to FO d-DNNF

▶ Crane (Dilkas and Belle 2023)

▶ knowledge compilation to FO d-DNNF + directed cycles

▶ extends ForcLift with support for:

▶ more input sentences and

▶ recursive solutions

Some Other Approaches

▶ L2C (Kazemi and Poole 2016)

▶ knowledge compilation to C++ code

▶ Alchemy (Gogate and Domingos 2016)

▶ DPLL-style search

▶ FastWFOMC (van Bremen and Kuželka 2021)

▶ based on cell enumeration

4 / 16

Exact Algorithms for FOMC

Predecessors of This Work

▶ ForcLift (Van den Broeck et al. 2011)

▶ knowledge compilation to FO d-DNNF

▶ Crane (Dilkas and Belle 2023)

▶ knowledge compilation to FO d-DNNF + directed cycles

▶ extends ForcLift with support for:

▶ more input sentences and

▶ recursive solutions

Some Other Approaches

▶ L2C (Kazemi and Poole 2016)

▶ knowledge compilation to C++ code

▶ Alchemy (Gogate and Domingos 2016)

▶ DPLL-style search

▶ FastWFOMC (van Bremen and Kuželka 2021)

▶ based on cell enumeration

4 / 16

Previous Work: Crane (Dilkas and Belle 2023)

▶ A knowledge compilation approach:

▶ Sentences→ labelled digraphs→ function-defining equations

▶ Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

f (m, n) =
n∑

l=0

(
n
l

)
(−1)n−lg(l,m),

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases

Usability: how do I compute, e.g., f (7, 7)? (C++ to the rescue!)

5 / 16

Previous Work: Crane (Dilkas and Belle 2023)

▶ A knowledge compilation approach:

▶ Sentences→ labelled digraphs→ function-defining equations

▶ Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

f (m, n) =
n∑

l=0

(
n
l

)
(−1)n−lg(l,m),

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases

Usability: how do I compute, e.g., f (7, 7)? (C++ to the rescue!)

5 / 16

Previous Work: Crane (Dilkas and Belle 2023)

▶ A knowledge compilation approach:

▶ Sentences→ labelled digraphs→ function-defining equations

▶ Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

f (m, n) =
n∑

l=0

(
n
l

)
(−1)n−lg(l,m),

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases

Usability: how do I compute, e.g., f (7, 7)? (C++ to the rescue!)

5 / 16

The Workflow of Crane2 (1/2)

1. Use Crane to compile sentence ϕ into a set of equations E

2. Simplify them, e.g.,

g(l,m) =
m∑

k=0

[0 ≤ k ≤ 1]

(
m
k

)
g(l − 1,m− k)

becomes

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

3. (⇒) Identify a sufficient set of base cases of all recursive functions

▶ e.g., { g(0,m), g(l, 0) }

6 / 16

The Workflow of Crane2 (1/2)

1. Use Crane to compile sentence ϕ into a set of equations E
2. Simplify them, e.g.,

g(l,m) =
m∑

k=0

[0 ≤ k ≤ 1]

(
m
k

)
g(l − 1,m− k)

becomes

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

3. (⇒) Identify a sufficient set of base cases of all recursive functions

▶ e.g., { g(0,m), g(l, 0) }

6 / 16

The Workflow of Crane2 (1/2)

1. Use Crane to compile sentence ϕ into a set of equations E
2. Simplify them, e.g.,

g(l,m) =
m∑

k=0

[0 ≤ k ≤ 1]

(
m
k

)
g(l − 1,m− k)

becomes

g(l,m) = g(l − 1,m) +mg(l − 1,m− 1)

3. (⇒) Identify a sufficient set of base cases of all recursive functions

▶ e.g., { g(0,m), g(l, 0) }

6 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = ??? 4.3. Add to E g(l, 0) =???

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = ??? 4.3. Add to E g(l, 0) =???

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = ??? 4.3. Add to E g(l, 0) =???

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = 0
m

4.3. Add to E g(l, 0) = 1

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = 0
m

4.3. Add to E g(l, 0) = 1

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = 0
m

4.3. Add to E g(l, 0) = 1

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

The Workflow of Crane2 (2/2)

4. For each base case:

g(0,m) g(l, 0)

∀y ∈ ∆. S(y) ∨ ¬S(y) ⊤

g(0,m) = 0
m

4.3. Add to E g(l, 0) = 1

E

Domain sizes C++ code Model count

4.1. (⇒) Construct the corr. sentence

4.2. Recurse

5. (⇒) Compile to C++

7 / 16

Finding (a Sufficient Set of) Base Cases

Outline

1. For every function call:

1.1 For every argument of the form var− const:
1.1.1 Replace the signature parameter with 0, 1, . . . , const− 1

1.2 For every argument of the form const:
1.2.1 Replace the corresponding signature parameter with const

Example

The signature of g is g(l,m).

Function calls: g(l − 1,m) g(l − 1,m− 1)

Base cases: g(0,m) g(l, 0)

8 / 16

No Infinite Cycles

Theorem

The evaluation of a recursive function always terminates.

Proof (hints).

▶ There exists a topological ordering of functions

▶ All function calls follow the structure from the previous slide

▶ Some common-sense assumptions about the evaluation order

and previous work

9 / 16

No Infinite Cycles

Theorem

The evaluation of a recursive function always terminates.

Proof (hints).

▶ There exists a topological ordering of functions

▶ All function calls follow the structure from the previous slide

▶ Some common-sense assumptions about the evaluation order

and previous work

9 / 16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

▶ Crane associates each function f with a sentence ϕ such that

Crane(ϕ) produces the definition of f
▶ And there is a bijection between the parameters of f and the

domains of ϕ

Example

▶ Base case: g(

Γ

↕

0,

∆

↕

m)

▶ Part of the sentence of g:

∀x ∈ Γ. ∀y ∈ ∆. S(y) ∨ ¬P(x, y) (1)

▶ g(0, . . .) means we need to simplify (1) by assuming |Γ| = 0

▶ Result: ∀y ∈ ∆. S(y) ∨ ¬S(y) (Smoothing)

10 / 16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

▶ Crane associates each function f with a sentence ϕ such that

Crane(ϕ) produces the definition of f
▶ And there is a bijection between the parameters of f and the

domains of ϕ

Example

▶ Base case: g(

Γ

↕
0,

∆

↕
m)

▶ Part of the sentence of g:

∀x ∈ Γ. ∀y ∈ ∆. S(y) ∨ ¬P(x, y) (1)

▶ g(0, . . .) means we need to simplify (1) by assuming |Γ| = 0

▶ Result: ∀y ∈ ∆. S(y) ∨ ¬S(y) (Smoothing)

10 / 16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

▶ Crane associates each function f with a sentence ϕ such that

Crane(ϕ) produces the definition of f
▶ And there is a bijection between the parameters of f and the

domains of ϕ

Example

▶ Base case: g(

Γ

↕
0,

∆

↕
m)

▶ Part of the sentence of g:

∀x ∈ Γ. ∀y ∈ ∆. S(y) ∨ ¬P(x, y) (1)

▶ g(0, . . .) means we need to simplify (1) by assuming |Γ| = 0

▶ Result: ∀y ∈ ∆. S(y) ∨ ¬S(y) (Smoothing)

10 / 16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

▶ Crane associates each function f with a sentence ϕ such that

Crane(ϕ) produces the definition of f
▶ And there is a bijection between the parameters of f and the

domains of ϕ

Example

▶ Base case: g(

Γ

↕
0,

∆

↕
m)

▶ Part of the sentence of g:

∀x ∈ Γ. ∀y ∈ ∆. S(y) ∨ ¬P(x, y) (1)

▶ g(0, . . .) means we need to simplify (1) by assuming |Γ| = 0

▶ Result: ∀y ∈ ∆. S(y) ∨ ¬S(y) (Smoothing)

10 / 16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

▶ Crane associates each function f with a sentence ϕ such that

Crane(ϕ) produces the definition of f
▶ And there is a bijection between the parameters of f and the

domains of ϕ

Example

▶ Base case: g(

Γ

↕
0,

∆

↕
m)

▶ Part of the sentence of g:

∀x ∈ Γ. ∀y ∈ ∆. S(y) ∨ ¬P(x, y) (1)

▶ g(0, . . .) means we need to simplify (1) by assuming |Γ| = 0

▶ Result: ∀y ∈ ∆. S(y) ∨ ¬S(y) (Smoothing)

10 / 16

The Structure of the Resulting C++ Program

initialise Cacheg(0,m), Cacheg(l,0), Cacheg , and Cachef ;

Function g0,m(m): . . .

Function gl,0(l): . . .

Function g(l,m):
if (l,m) ∈ Cacheg then return Cacheg(l,m);

if l = 0 then return g0,m(m);

if m = 0 then return gl,0(l);

r ← g(l − 1,m) +mg(l − 1,m− 1);
Cacheg(l,m)← r ;
return r ;

Function f (m, n): . . .

Function Main:
(m, n)← ParseCommandLineArguments();

return f (m, n);

11 / 16

The Structure of the Resulting C++ Program

initialise Cacheg(0,m), Cacheg(l,0), Cacheg , and Cachef ;

Function g0,m(m): . . .

Function gl,0(l): . . .

Function g(l,m):
if (l,m) ∈ Cacheg then return Cacheg(l,m);

if l = 0 then return g0,m(m);

if m = 0 then return gl,0(l);

r ← g(l − 1,m) +mg(l − 1,m− 1);
Cacheg(l,m)← r ;
return r ;

Function f (m, n): . . .

Function Main:
(m, n)← ParseCommandLineArguments();

return f (m, n);

11 / 16

The Structure of the Resulting C++ Program

initialise Cacheg(0,m), Cacheg(l,0), Cacheg , and Cachef ;

Function g0,m(m): . . .

Function gl,0(l): . . .

Function g(l,m):
if (l,m) ∈ Cacheg then return Cacheg(l,m);

if l = 0 then return g0,m(m);

if m = 0 then return gl,0(l);

r ← g(l − 1,m) +mg(l − 1,m− 1);
Cacheg(l,m)← r ;
return r ;

Function f (m, n): . . .

Function Main:
(m, n)← ParseCommandLineArguments();

return f (m, n);

11 / 16

Benchmarks

▶ Friends & Smokers

(∀x, y ∈ ∆. S(x) ∧ F (x, y)→ S(y)) ∧ (∀x ∈ ∆. S(x)→ C(x))

▶ Functions

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z)

▶ Bijections

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀y ∈ ∆. ∃x ∈ Γ. P(x, y)) ∧

(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z) ∧
(∀x, z ∈ Γ. ∀y ∈ ∆. P(x, y) ∧ P(z, y)→ x = z)

12 / 16

Benchmarks

▶ Friends & Smokers

(∀x, y ∈ ∆. S(x) ∧ F (x, y)→ S(y)) ∧ (∀x ∈ ∆. S(x)→ C(x))

▶ Functions

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z)

▶ Bijections

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀y ∈ ∆. ∃x ∈ Γ. P(x, y)) ∧

(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z) ∧
(∀x, z ∈ Γ. ∀y ∈ ∆. P(x, y) ∧ P(z, y)→ x = z)

12 / 16

Benchmarks

▶ Friends & Smokers

(∀x, y ∈ ∆. S(x) ∧ F (x, y)→ S(y)) ∧ (∀x ∈ ∆. S(x)→ C(x))

▶ Functions

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z)

▶ Bijections

(∀x ∈ Γ. ∃y ∈ ∆. P(x, y)) ∧
(∀y ∈ ∆. ∃x ∈ Γ. P(x, y)) ∧

(∀x ∈ Γ. ∀y, z ∈ ∆. P(x, y) ∧ P(x, z)→ y = z) ∧
(∀x, z ∈ Γ. ∀y ∈ ∆. P(x, y) ∧ P(z, y)→ x = z)

12 / 16

Friends & Smokers

8×

2

16

128

1024

23 26 29 212

Domain size

T
ot
al

ru
n
ti
m
e
(s
)

Crane2-BFS Crane2-Greedy FastWFOMC ForcLift

13 / 16

Bijections

64×64×64×64×64×64×64×64×64×64×64×64×64×64×64×64×64×64×

16

64

256

23 26 29 212

Domain size

T
ot
al

ru
n
ti
m
e
(s
)

Crane2-BFS FastWFOMC

14 / 16

Functions

> 500,000×

2

16

128

23 26 29 212 215 218 221 224 227

Domain size

T
ot
al

ru
n
ti
m
e
(s
)

Crane2-BFS Crane2-Greedy FastWFOMC ForcLift

15 / 16

Summary & Future Work

Contributions

Completeness: recursive solutions now come with base cases

Usability: compilation to C++ programs

Scalability compared to other FOMC algorithms

▶ 8 to 500,000 times higher domain sizes

Future Work

▶ Support for weighted counting (trivial)

▶ Experiments on a large set of benchmarks

▶ Completeness for fragments of first-order logic

▶ Fine-grained complexity

16 / 16

Summary & Future Work

Contributions

Completeness: recursive solutions now come with base cases

Usability: compilation to C++ programs

Scalability compared to other FOMC algorithms

▶ 8 to 500,000 times higher domain sizes

Future Work

▶ Support for weighted counting (trivial)

▶ Experiments on a large set of benchmarks

▶ Completeness for fragments of first-order logic

▶ Fine-grained complexity

16 / 16

