Towards Practical First-Order Model Counting

Ananth K. Kidambi' Guramrit Singh! Paulius Dilkas*?
Kuldeep S. Meel*?

"IT Bombay, India
2University of Toronto, Canada
3Vector Institute, Canada

4Georgia Tech, USA

SAT 2025

1/16

Motivation

Example Setting

P Let A be a set of cardinality n € Nj

» Suppose we want to count all P C A? (as a function of n) that
are:

functions,

bijections,

partial orders,

symmetric,

transitive,

etc.

VVVyVYYVYY

2/16

Motivation

Example Setting

P Let A be a set of cardinality n € Nj

» Suppose we want to count all P C A? (as a function of n) that
are:

functions,

bijections,

partial orders,

symmetric,

transitive,

etc.

VVVyVYYVYY

L3 Propositional model counting (#SAT) is #P-complete
) But many of these counting problems have efficient solutions

» And we can find them using first-order model counting

> i.e., reasoning about sets, subsets, and arbitrary elements
without grounding them

2/16

More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

3/16

More Formally: What Is the Input?

Example Input Sentence
Vx e l.Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

3/16

More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

3/16

More Formally: What Is the Input?

Example Input Sentence
Vx el Vy,ze A P(x,y) \P(x,z) >y =z

Many-Sorted Function-Free First-Order Logic with Equality

3/16

More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

» Any number of variables and constants

» dand V quantifiers can be nested arbitrarily deeply
» All domains are finite
» Solutions are functions that take domain sizes as inputs

» Of course, not all valid inputs have tractable solutions

3/16

More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

» Any number of variables and constants

» dand V quantifiers can be nested arbitrarily deeply
» All domains are finite
» Solutions are functions that take domain sizes as inputs

» Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)
» Each predicate acts like a subset
» of a domain or a Cartesian product of domains

» Goal: count combinations of subsets that satisfy the sentence
3/16

Exact Algorithms for FOMC

Predecessors of This Work
» ForcLIFT (Van den Broeck et al. 2011)
» knowledge compilation to FO d-DNNF
» CRANE (Dilkas and Belle 2023)

> knowledge compilation to FO d-DNNF + directed cycles
» extends ForcLIFT with support for:

» more input sentences and
> recursive solutions

4/16

Exact Algorithms for FOMC

Predecessors of This Work
» ForcLIFT (Van den Broeck et al. 2011)
» knowledge compilation to FO d-DNNF
» CRANE (Dilkas and Belle 2023)

> knowledge compilation to FO d-DNNF + directed cycles
» extends ForcLIFT with support for:

» more input sentences and
> recursive solutions

Some Other Approaches
» L2C (Kazemi and Poole 2016)
> knowledge compilation to C++ code
» Alchemy (Gogate and Domingos 2016)
» DPLL-style search
» FastWFOMC (van Bremen and Kuzelka 2021)

» based on cell enumeration

4/16

Previous Work: CRANE (Dilkas and Belle 2023)

» A knowledge compilation approach:
> Sentences — labelled digraphs — function-defining equations

» Two variants: greedy search and breadth-first search (BFS)

5/16

Previous Work: CRANE (Dilkas and Belle 2023)

» A knowledge compilation approach:
> Sentences — labelled digraphs — function-defining equations

» Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

n

) =3 () (-1 et

[=0
g(l,m)=g(l—1,m)+mg(l—1,m—1)

5/16

Previous Work: CRANE (Dilkas and Belle 2023)

» A knowledge compilation approach:
> Sentences — labelled digraphs — function-defining equations

» Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

n

) =3 () (-1 et

[=0
g(l,m)=g(l—1,m)+mg(l—1,m—1)

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases

Usability: how do | compute, e.g., f(7,7)? (C++ to the rescue!)

5/16

The Workflow of CRANE2 (1/2)

1. Use CRANE to compile sentence ¢ into a set of equations &£

6/16

The Workflow of CRANE2 (1/2)

1. Use CRANE to compile sentence ¢ into a set of equations £

2. Simplify them, e.g.,

g(l,m):Z[ogkg 1]<'Z>g(l—1,m—k)
k=0

becomes

g(my=g(l—1,m) +mg(l—1,m—1)

6/16

The Workflow of CRANE2 (1/2)

1. Use CRANE to compile sentence ¢ into a set of equations &£

2. Simplify them, e.g.,

g(l,m):Z[ogkg 1]<'Z>g(l—1,m—k)
k=0

becomes

g(my=g(l—1,m) +mg(l—1,m—1)

3. (=) ldentify a sufficient set of base cases of all recursive functions
> eg, {5(0,m), g(L,0)}

6/16

The Workflow of CRANE2 (2/2)

4. For each base case:

8(0, m) 8(1,0)

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:
g(0,m) 8(1,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:

g(0, m) 8(L,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T
l 4.2. Recurse l
g(0,m) =772 g(l,0) =777

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:

8(0,m) g(1,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T

l 4.2. Recurse l

g(0,m) =0™ g(L0)=1

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:

g(0, m) 8(L,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T
l 4.2. Recurse l
g(0,m) = 0™ 4.3. Add to £ g(1,0) =1

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:

g(0, m) 8(L,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T
l 4.2. Recurse l
g(0,m) = 0™ 4.3. Add to £ g(1,0) =1

7/16

The Workflow of CRANE2 (2/2)

4. For each base case:

g(0, m) 8(L,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T
l 4.2. Recurse l
g(0,m) = 4.3.Add to & g(L0)=1

\/

l (=) Compile to C++

7/16

Finding (a Sufficient Set of) Base Cases

Outline
1. For every function call:
1.1 For every argument of the form var — const:
1.1.1 Replace the signature parameter with 0, 1, ..., const — 1
1.2 For every argument of the form const:
1.2.1 Replace the corresponding signature parameter with const

Example
The signature of g is g(l, m).
Function calls: g(l—1,m) gll—1,m—1)
Base cases: g(L,0)

8/16

No Infinite Cycles

Theorem
The evaluation of a recursive function always terminates.

9/16

No Infinite Cycles

Theorem
The evaluation of a recursive function always terminates.

Proof (hints).

P There exists a topological ordering of functions
> All function calls follow the structure from the previous slide

> Some common-sense assumptions about the evaluation order
and previous work

O

9/16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example

> Base case: g(0, m)

10/16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example

roa
T
> Base case: g(0, r%)

10/16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example
roa

¢
> Base case: g(0, m)
» Part of the sentence of g:

Vx €T.Vy € A. S(y) VvV —P(x,y) (M

10/16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example
roa

¢
> Base case: g(0, m)
» Part of the sentence of g:

Vx €T.Vy € A. S(y) VvV —P(x,y) (M

» 5(0,...) means we need to simplify (1) by assuming |['| =0

10/16

From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)
> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example
roa

¢
> Base case: g(0, m)
» Part of the sentence of g:

Vx €T.Vy € A. S(y) VvV —P(x,y) (M

» 5(0,...) means we need to simplify (1) by assuming |['| =0
> Result: Yy € A. S(y) V =5(y) (Smoothing)

10/16

The Structure of the Resulting C++ Program

initialise Cacheg (g), Cachey(;), Cacheg, and Cachey;

11/16

The Structure of the Resulting C++ Program
initialise Cacheg (g), Cachey(;), Cacheg, and Cachey;

Function g, ,,(m): ...
Function g;o(/): ...

11/16

The Structure of the Resulting C++ Program

initialise Cacheg (g), Cachey(;), Cacheg, and Cachey;
Function g, ,,(m): ...

Function g;o(/): ...

Function g([, m):

if ([, m) € Cache, then return Cache,(l, m);

if [= 0 then return g, ,,(m);

if m = 0 then return g ,([);
r—g(l—1,m+mg(l—1,m—1);
Cacheg(l, m) < r;

return r;

Function f(m, n): ...

Function Main:
(m, n) < ParseCommandLineArguments ();
return f(m, n);

11/16

Benchmarks

» Friends & Smokers

(Vx,y € A. S(x) A F(x,y) = S(y)) A (Yx € A. S(x) — C(x))

12/16

Benchmarks

» Friends & Smokers

(Vx,y € A. S(x) A F(x,y) = S(y)) A (Yx € A. S(x) — C(x))
» Functions

(VxeTl. Jye A P(x,y)) A
(Vx el Vy,ze A. P(x,y) A P(x,2) = y = 2)

12/16

Benchmarks

» Friends & Smokers

(Vx,y € A. S(x) A F(x,y) = S(y)) A (Yx € A. S(x) — C(x))

» Functions

(VxeTl. Jye A P(x,y)) A
(Vx el Vy,ze A. P(x,y) A P(x,2) = y = 2)

» Bijections

(Vxel.dy e A P(x,y)) A

(Vye A.Ix el P(x,y)) A
(Vx el.Vy,ze A P(x,y) N P(x,z) >y =2z) A
(Vx,ze.Vy € A. P(x,y) A P(z,y) = x = 2)

12/16

Friends & Smokers

1024 +—
— — /
2] /
~ - /
o 128 ,
/
g - ,
u
e B e
o 164
< &-—p - --p--8--E-—-8-
8 —
& -
2_7
S
T il i | |

23 2‘6 29 2 12
Domain size

~0— CRANE2-BFS -4 CRANE2-GREEDY —# FASTWFOMC —f= FORCLIFT

13/16

Bijections

[|
256 +— //
/

— | /
K / 64 x
g aid / =2
£ 64 |

=

= /

= /

O

= N

164 A

Domain size

—o— CRANE2-BFS -#- FAsTWFOMC

14/16

Functions

128 +—

16 1

Total runtime (s)

2‘9 2i2 2‘15 918 921 924 927

Domain size

—0— CRANE2-BFS -4A- CRANE2-GREEDY —#® FASTWFOMC —t= FORCLIFT

15/16

Summary & Future Work

Contributions
Completeness: recursive solutions now come with base cases
Usability: compilation to C++ programs
Scalability compared to other FOMC algorithms
> 8 to 500,000 times higher domain sizes

16/16

Summary & Future Work

Contributions
Completeness: recursive solutions now come with base cases
Usability: compilation to C++ programs
Scalability compared to other FOMC algorithms
> 8 to 500,000 times higher domain sizes

Future Work
» Support for weighted counting (trivial)
> Experiments on a large set of benchmarks
» Completeness for fragments of first-order logic

» Fine-grained complexity

16/16

