Towards Practical First-Order Model Counting

Ananth K. Kidambi'  Guramrit Singh!  Paulius Dilkas*?
Kuldeep S. Meel*?

"IT Bombay, India
2University of Toronto, Canada
3Vector Institute, Canada

4Georgia Tech, USA

SAT 2025

1/16



Motivation

Example Setting

P Let A be a set of cardinality n € Nj

» Suppose we want to count all P C A? (as a function of n) that
are:

functions,

bijections,

partial orders,

symmetric,

transitive,

etc.
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L3 Propositional model counting (#SAT) is #P-complete
) But many of these counting problems have efficient solutions

» And we can find them using first-order model counting

> i.e., reasoning about sets, subsets, and arbitrary elements
without grounding them
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More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality
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More Formally: What Is the Input?

Example Input Sentence
Vx e M. Vy,ze A P(x,y) NP(x,z) >y =2z

Many-Sorted Function-Free First-Order Logic with Equality

» Any number of variables and constants

» dand V quantifiers can be nested arbitrarily deeply
» All domains are finite
» Solutions are functions that take domain sizes as inputs

» Of course, not all valid inputs have tractable solutions

First-Order Model Counting (FOMC)
» Each predicate acts like a subset
» of a domain or a Cartesian product of domains

» Goal: count combinations of subsets that satisfy the sentence
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Exact Algorithms for FOMC

Predecessors of This Work
» ForcLIFT (Van den Broeck et al. 2011)
» knowledge compilation to FO d-DNNF
» CRANE (Dilkas and Belle 2023)

> knowledge compilation to FO d-DNNF + directed cycles
» extends ForcLIFT with support for:

» more input sentences and
> recursive solutions
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Exact Algorithms for FOMC

Predecessors of This Work
» ForcLIFT (Van den Broeck et al. 2011)
» knowledge compilation to FO d-DNNF
» CRANE (Dilkas and Belle 2023)

> knowledge compilation to FO d-DNNF + directed cycles
» extends ForcLIFT with support for:

» more input sentences and
> recursive solutions

Some Other Approaches
» L2C (Kazemi and Poole 2016)
> knowledge compilation to C++ code
» Alchemy (Gogate and Domingos 2016)
» DPLL-style search
» FastWFOMC (van Bremen and Kuzelka 2021)

» based on cell enumeration
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Previous Work: CRANE (Dilkas and Belle 2023)

» A knowledge compilation approach:
> Sentences — labelled digraphs — function-defining equations

» Two variants: greedy search and breadth-first search (BFS)
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Previous Work: CRANE (Dilkas and Belle 2023)

» A knowledge compilation approach:
> Sentences — labelled digraphs — function-defining equations

» Two variants: greedy search and breadth-first search (BFS)

An Example Solution for Counting Bijections

n

) =3 () (-1 et

[=0
g(l,m)=g(l—1,m)+mg(l—1,m—1)

Issues We Are Going to Address

Completeness: recursive functions (like g) have no base cases

Usability: how do | compute, e.g., f(7,7)?  (C++ to the rescue!)
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The Workflow of CRANE2 (1/2)

1. Use CRANE to compile sentence ¢ into a set of equations &£
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The Workflow of CRANE2 (1/2)

1. Use CRANE to compile sentence ¢ into a set of equations &£

2. Simplify them, e.g.,

g(l,m):Z[ogkg 1]<'Z>g(l—1,m—k)
k=0

becomes

g(my=g(l—1,m) +mg(l—1,m—1)

3. (=) ldentify a sufficient set of base cases of all recursive functions
> eg, {5(0,m), g(L,0)}
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The Workflow of CRANE2 (2/2)

4. For each base case:

8(0, m) 8(1,0)
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The Workflow of CRANE2 (2/2)

4. For each base case:

g(0, m) 8(L,0)
l 4.1. (=) Construct the corr. sentence l
Vy € A. S(y) vV —5(y) T
l 4.2. Recurse l
g(0,m) = 4.3.Add to & g(L0)=1

\/

l (=) Compile to C++
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Finding (a Sufficient Set of) Base Cases

Outline
1. For every function call:
1.1 For every argument of the form var — const:
1.1.1 Replace the signature parameter with 0, 1, ..., const — 1
1.2 For every argument of the form const:
1.2.1 Replace the corresponding signature parameter with const

Example
The signature of g is g(l, m).
Function calls: g(l—1,m) gll—1,m—1)
Base cases: g(L,0)
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No Infinite Cycles

Theorem
The evaluation of a recursive function always terminates.
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No Infinite Cycles

Theorem
The evaluation of a recursive function always terminates.

Proof (hints).

P There exists a topological ordering of functions
> All function calls follow the structure from the previous slide

> Some common-sense assumptions about the evaluation order
and previous work

O
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From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)

> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example

> Base case: g(0, m)
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From a Base Case to a Sentence

From Previous Work (Dilkas and Belle 2023)
> CRANE associates each function f with a sentence ¢ such that
CRANE(¢) produces the definition of f

> And there is a bijection between the parameters of f and the
domains of ¢

Example
roa

¢
> Base case: g(0, m)
» Part of the sentence of g:

Vx €T.Vy € A. S(y) VvV —P(x,y) (M

» 5(0,...) means we need to simplify (1) by assuming |['| =0
> Result: Yy € A. S(y) V =5(y) (Smoothing)
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The Structure of the Resulting C++ Program

initialise Cacheg (g ), Cachey(; ), Cacheg, and Cachey;
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The Structure of the Resulting C++ Program

initialise Cacheg (g ), Cachey(; ), Cacheg, and Cachey;
Function g, ,,(m): ...

Function g;o(/): ...

Function g([, m):

if ([, m) € Cache, then return Cache,(l, m);

if [ = 0 then return g, ,,(m);

if m = 0 then return g ,([);
r—g(l—1,m+mg(l—1,m—1);
Cacheg(l, m) < r;

return r;

Function f(m, n): ...

Function Main:
(m, n) < ParseCommandLineArguments ();
return f(m, n);
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Benchmarks

» Friends & Smokers

(Vx,y € A. S(x) A F(x,y) = S(y)) A (Yx € A. S(x) — C(x))
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Benchmarks

» Friends & Smokers

(Vx,y € A. S(x) A F(x,y) = S(y)) A (Yx € A. S(x) — C(x))

» Functions

(VxeTl. Jye A P(x,y)) A
(Vx el Vy,ze A. P(x,y) A P(x,2) = y = 2)

» Bijections

(Vxel.dy e A P(x,y)) A

(Vye A.Ix el P(x,y)) A
(Vx el.Vy,ze A P(x,y) N P(x,z) >y =2z) A
(Vx,ze.Vy € A. P(x,y) A P(z,y) = x = 2)
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Friends & Smokers
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Bijections
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Functions
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Summary & Future Work

Contributions
Completeness: recursive solutions now come with base cases
Usability: compilation to C++ programs
Scalability compared to other FOMC algorithms
> 8 to 500,000 times higher domain sizes
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Summary & Future Work

Contributions
Completeness: recursive solutions now come with base cases
Usability: compilation to C++ programs
Scalability compared to other FOMC algorithms
> 8 to 500,000 times higher domain sizes

Future Work
» Support for weighted counting (trivial)
> Experiments on a large set of benchmarks
» Completeness for fragments of first-order logic

» Fine-grained complexity
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