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Efficient probabilistic inference remains a significant challenge, with applications including probabilistic
programming, graphical models, statistical-relational systems, and neuro-symbolic systems [1]. Many of these
systems exhibit patterns of independence and symmetry that traditional inference methods often fail to
recognise. My research addresses this issue by developing model counting algorithms for propositional and
first-order logic (FO), which use these patterns to enhance inference efficiency. By leveraging the inherent
structure of these problems, my algorithms can manage larger datasets and find polynomial-time solutions
for scenarios that might otherwise require exponential time.

Model counting is a dynamic research area with extensive connections across computer science and
mathematics. It benefits from and contributes to fundamental data structures like automata, circuits, and
decision diagrams and intersects with database theory, descriptive complexity, combinatorics, and finite
model theory. The applications of model counting extend beyond probabilistic inference and learning to areas
including formal verification, quantum computing, and explainable artificial intelligence (AI). For instance,
it aids in assessing software reliability, analysing properties of neural networks like fairness and robustness,
simulating quantum circuits on classical machines, verifying circuit equivalence, and understanding the
complexity of explainability algorithms. However, the efficiency of a solution to a counting problem often
depends on how we formulate the problem.

My research focuses on developing novel counting algorithms and knowledge representation formats that
are sufficiently rich to capture the simplicity of any given problem. In other words, if a human can examine
the problem, perform a few simple calculations, and provide the answer, then a computer should not require
significantly more resources. My contributions include a scalable first-order model counting algorithm that
constructs recursive functions to encapsulate the solution to the counting problem. I have also developed
a top-performing algorithm for probabilistic inference in Bayesian networks based on a generalised version
of (weighted) model counting. My work in experimental algorithmics involves two new random instance
generators for logic programs and model-counting instances based on constraint solvers and a new technique
for controlling treewidth. In the future, I aim to develop efficient algorithms for model sampling, theories
employed by satisfiability modulo theories solvers, fragments of FO that surpass the capabilities of current
model counting algorithms, and more expressive logics such as monadic second-order logic and FO with
counting.

My long-term vision is to facilitate efficient counting and sampling across various input formats. Advance-
ments can be made by adapting counting techniques to new domains and improving existing algorithms to
make them more effective and versatile. These developments will expand the application of probabilistic and
quantitative methods across AI systems, formal methods, and beyond.

Research Thrust 1: Propositional Model Counting and Probabilistic Inference

One of the primary focuses of my work is weighted model counting (WMC) and its applications in probabilistic
inference. WMC extends the well-known Boolean satisfiability (SAT) problem. SAT asks whether a given
propositional formula has a model. The propositional model counting problem seeks to determine the number
of models. WMC goes a step further by asking for the weighted sum of these models.

My research revisits the foundations of WMC and explores generalisations of key definitions to enhance
conceptual clarity and practical efficiency. We begin by developing a measure-theoretic perspective on WMC,
which introduces a new and more general method for defining the weights of an instance [5]. This new
representation can be as concise as standard WMC or expand to accommodate less-structured probability
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distributions. We demonstrate the performance benefits of this new format by creating a novel WMC encoding
for Bayesian networks.

Next, we show how to transform existing WMC encodings for Bayesian networks into this more general
format [6]. By combining the strengths of this more flexible representation with the techniques of existing
encodings, we achieve further efficiency improvements in probabilistic inference, surpassing all other WMC-
based approaches on most benchmarks.

Research Thrust 2: First-Order Model Counting and Lifted Inference

In propositional logic, encoding a claim such as “after flipping n coins, exactly one came out as heads” involves
iterating over every pair of coins and asserting that at most one of them showed heads. In FO, this can
be expressed more succinctly as (∃x ∈ Coins. Heads(x)) ∧ (∀x, y ∈ Coins. (Heads(x) ∧Heads(y)) ⇒ x = y).
The distinction is not merely conceptual; this formulation allows the algorithm to recognise that all coins
are exchangeable and leverage this symmetry for greater efficiency. The performance improvement can be
exponential: while propositional model counting is #P-complete, counting in FO—known as first-order model
counting (FOMC)—can often be performed in polynomial time with respect to the domain size. Similarly to
WMC, the weighted variant of FOMC is used for polynomial-time inference on statistical-relational models,
such as Markov logic networks. More broadly, the practice of accelerating probabilistic inference by exploiting
symmetries is termed lifted inference.

My early work on FOMC introduced a new knowledge compilation-based model counter, Crane, demon-
strating its ability to handle fragments of FO that other FOMC algorithms cannot address [7]. Knowledge
compilation algorithms build a circuit by iteratively applying compilation rules to formulas. This circuit
can then be processed in polynomial time to compute the model count. Crane makes two fundamental
contributions to the field. First, it enables recursive solutions by constructing circuits with cycles, where
each cycle-inducing edge acts as a recursive function call. Second, we show how to interpret these circuits as
collections of function definitions whose evaluation encodes the desired model count. This approach enables
us to produce an algebraic expression for the model count as a function of arbitrary domain sizes.

Recently, I supervised several student projects that built upon this work. First, we presented a new version
of Crane that compiles each circuit into a C++ program, demonstrating significant scalability improvements
over other algorithms [2]. Another student project focused on employing FOMC-based techniques to tackle
FO formulas beyond the capabilities of existing FOMC algorithms. This work introduces an approach that is
up to an order of magnitude more efficient than the current state of the art for such formulas. Additionally,
one of my ongoing projects aims to extend Crane’s applicability to larger fragments of FO by introducing
new compilation rules and generalising existing techniques.

Research Thrust 3: Synthetic Data Generation and Experimental Algorithmics

Quality algorithms generally emerge from a blend of theoretical reasoning and extensive experimental work.
It is crucial to test algorithms across a broad range of problem instances to substantiate claims regarding one
algorithm’s superiority over another. However, existing benchmarks often fall short, failing to highlight key
differences in algorithm performance. To gain a deeper understanding of the performance characteristics of
WMC algorithms, I have undertaken several research projects aimed at developing novel random models and
conducting comprehensive experimental analyses.

First, we have developed a constraint model for generating random probabilistic logic programs [4]. These
programs are typically evaluated using WMC algorithms. We also introduce a new constraint to manage the
independence structure of the underlying probability distribution. This model enables us to experimentally
investigate inference algorithms on a significantly larger set of instances than before.

Second, we present a random model for WMC instances that includes a parameter that indirectly controls
treewidth [3]. We show that all WMC algorithms scale exponentially with treewidth, albeit at different rates.
Additionally, we demonstrate that the easy-hard-easy pattern concerning clause density differs for algorithms
based on dynamic programming and algebraic decision diagrams compared to other solvers.



Future Directions

In the future, model counting-based algorithms and systems will become increasingly essential for two key
reasons. First, these algorithms are experiencing a transformation similar to the one that allowed SAT—initially
a prototypical NP-complete problem—to be solved efficiently on practical benchmarks. This transformation
will enable a growing number of applications to move beyond simply determining whether an event is possible
to quantifying its probability or frequency. Second, model counting algorithms will continue to undergird
efficient inference in symbolic AI systems. These systems will serve as tools, collaborators, supervisors, or
verifiers of subsymbolic AI methods, working together to provide trustworthy answers to complex queries. The
remainder of this section outlines three primary directions for my future research, focused on improving the
capabilities, efficiency, and reliability of model counting algorithms to support these widespread applications.

Knowledge Compilation for Counting and Sampling. I plan to continue my work on knowledge
compilation-based algorithms. Two ongoing research projects align with this focus: the effort to enhance
Crane’s capabilities for larger fragments of FO by introducing new compilation rules and the development of
a randomised algorithm for first-order model sampling. A long-term goal in this domain is to design a model
counting algorithm for first-order logic with counting (FO + C). While the capabilities of such an algorithm
remain largely uncharted, FO + C would facilitate reasoning about the number of variable instantiations that
satisfy a formula. For example, FO + C could model the problem of counting the number of directed graphs
with n vertices, where for each edge e, the source of e has a higher degree than the target.

Automata-Based Counting. Addressing counting problems by reducing them to counting the accepting
paths of an automaton and deriving the corresponding generating functions is an under-explored area of
research. In particular, multi-track automata hold the potential to become a widely used data structure in
this setting akin to decision diagrams. My ongoing work on counting the combinations of bit-vector-valued
variables that satisfy arbitrary arithmetic and number-theoretic constraints fits this theme. In the future, I
intend to apply automata-based counting techniques to monadic second-order logic. Another long-term project
involves enriching these automata with a structure allowing an automaton to encode counting problems
independently of bit vector length or domain size.

Certificate Generation. A certified algorithm produces its final answer with an externally-verifiable
proof of its correctness. Certification is a vibrant area of research in SAT and, more recently, propositional
model counting. However, FOMC necessitates entirely different certification techniques, such as equipping an
automated theorem prover with the ability to reason about FO formulas and their models. Implementing certi-
fication for FOMC will also deepen our understanding of the problem, which could inspire new advancements
in counting algorithms.
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